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FOREWORD

This final technical report was prepared for the Ames Research Center,
Moffett Field, Calif., by Goodyear Aerospace Corporation, Akron, Ohio,
under NASA Contract NAS2-8643, '"Feasibility Study of Modern Airships."
The technical monitor for the Ames Research Center was Dr. Mark D.

Ardema.

This report describes work covered during Phase I (9 December 1974 to

9 April 1975) and consists of four volumes:

Volume I - Summary and Mission Analysis (Tasks II and IV)

Volume II - Parametric Analysis (Task III)
Volume III -Historical Overview (Task I)

Volume IV - Appendices

The report was a group effort headed by Mr. Ralph R. Huston and was
submitted in May 1975. The contractor's report number is GER-16146,
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FEASIBILITY STUDY OF MODERN AIRSHIPS

VOLUME III - HISTORICAL OVERVIEW (TASK I)
Gerald L. Faurote*

Goodyear Aerospace Corporation

SUMMARY

The history of lighter-than-air (LTA) vehicles is reviewed in terms of

providing a background for the mission analysis and parametric analysis tasks

(see Volumes I and II, respectively), which were performed as part of the

Goodyear Aerospace Corporation (GAC) feasibility study of modern airships.

In addition, data from past airships and airship operations are presented that

will be of interest in Phase II.

The following areas are detailed relative to past vehicles and operations:

1.
2.
3.

Parameterization of design characteristics

Historical markets, missions, costs, and operating procedures
Indices of efficiency so that comparisons can be made from
the parametric analysis of Volume 1I

Identification of critical design and operational characteristics
Definition of the 1930 state of the art, both technically and
economically. A 1974 state of the art is defined from both a

technical and an economic standpoint.

As a final portion of the historical overview, the more prominent concepts

emerging in the current resurgent interest in LTA are briefly reviewed.

*Development engineer, Goodyear Aerospace Corporation, Akron, Ohio.



INTRODUCTION

The essentials of free ballooning - including the gas-tight bag, the valve,
the net, and the basket that carried the pilots - were all developed in Europe
in the 18th century. Benjamin Franklin saw one of these earliest flights
and wrote home to friends in America: "Among the pleasantries that conver-
sation produces on this subject, some suppose flying to be now invented, and
that since men may be supported in the air, nothing is wanted but some light

handy instrument to give and direct motion. "

Inventors worked for a century to verify Franklin's prophecy. In 1852,
Henri Giffard, a French inventor, built the first power-driven balloon, a 45-
ft-long dirigible® which derived its motive power from a three-horsepower
steam engine. The first rigid airship was constructed in 1898 by an Austrian
named Schwartz. He used a framework consisting of 12 rings and 16 longi-

tudinal aluminum girders and an outer covering of sheet aluminum.

At the turn of the century, Count Zeppelin completed and flew his first
craft and thus laid the foundations for practicable commercial and military
operations. Between 1900 and 1918, the German Zeppelin Company built more
than 100 rigid airships. Ultimately, the Zeppelin Company built and operated
two of the world's most notable airships, the Graf Zeppelin and the Hinden-

burg, the latter being the largest airship ever built.

Other notable airship constructors from 1900 to 1918 were the German
Schutte - Lanz Company, which built 22 rigid airships from 1911 to 1918, and
the German Luft-Fahrying-Gesellschaft Company, which built 27-Parseval-
type non-rigid airships from 1906 to 1918. The Prussian Army Airship Works,

also a German concern, manufactured about 10 semi-rigid airships, the ma-

jority of them for the Prussian Army.

*A lighter-than-air aircraft, having its own motive power, that can be steeredin
any desired direction by its crew. Dirigible: of aircraft or airborne devices
that can be directed or steered; dirigible balloon; a ballocn, especially a non-
spherical balloon, that can be steered. No specific structural type is implicit
in the term "dirigible" in the U.S. Air Force Dictionary (1956)

-l -



The British became interested in rigid airships about 1910 and built a
small ship, the Mayfly. After 1914, the British also became highly active in
building non-rigid airships. The British R~-100 and R-101 attest to their con-
tinued interest in the rigid design. Both France and Italy were active in build-
ing semi-rigid airships, the Roma and Norge being notable Italian configura-

tions.

The American airship industry started in 1911, with Goodyear and Good-
rich the principal early suppliers. During World War I, Goodyear became
the major supplier and ultimately built and delivered more than 1000 balloons
and close to 100 non-rigid airships for the United States, England, and France.
Construction activities continued at Goodyear after the war, including build-

ing America's first semi-rigid ship, the RS-1.

In 1924, the Inter-Allied Air Commission forbade further German Zep-
pelin Company operations. With dismantling the huge zeppelin hangars on
Lake Constance projected, The Goodyear Tire & Rubber Company agreed
with Luftschiffbau-Zeppelin to form a new company, Goodyear Zeppelin Corp-
oration, in which L-Z would have a one-third interest and GT&R two-thirds
interest and in which the Zeppelin patents could be used. Dr. Karl Arnstein,
chief engineer of Luftschiffbau-Zeppelin - along with 12 of his technical ex-
perts - came to Goodyear to assume the position of Vice-President of
Engineering. With the combined expertise of the German Zeppelin Company
and the American airship industry now available, the Goodyear Zeppelin
Company a few years later designed and built the rigid airships Akron and

Macon for the U.S. Navy - the largest airships built to that date.

The Goodyear Zeppelin Company, later renamed Goodyear Aircraft
Company and known today as Goodyear Aerospace Corporation, continued to
build non-rigid airships for military purposes and between 1941 and 1961 de-
livered nearly 220 units to the Navy.* In 1961, the last ZPG-3W airship - the

largest non-rigid ever built - was delivered to the U.S. Navy. Goodyear
Aerospace continues to build advertising airships today for its parent organi-

zation, The Goodyear Tire & Rubber Company.

*
Only supplier of airships to the Navy since 1930.



The conventional airship is a powered, streamlined body-of-revolution,
air-displacement vehicle that derives its buoyancy from the difference in weight
of the inflation gas within its hull or envelope and the weight of the ambient
atmosphere thus displaced. Historically, two distinct structural types of air-
ships have given rise to a definition of dirigibles based on these structural
differences: (1) rigid (unpressurized) airships and (2) non-rigid (pressurized)

airships. A third type, the semi-rigid, basically is a blend of these two.

The rigid type (see Figure 1) - such as the Akron, Macon, and Hinden-
burg - were built of aluminum bulkhead rings, aluminum transverse girders,

and a network of pretensioned diagonal shear wires. An outer fabric (doped

ELEVATOR
LOMG I TUDINAL GIRDERS
FIN INTERMEDIATE RING
MAIN RING
VENTILATING SHAFT
RUDDER GAS CELL
/ AXIAL CORRIDOR
LANDING
WHEEL
ENGINE CAR

DIESEL OIL
FRE IGHT

CREW'S QUARTERS

LOUNGE

CABINS .k‘~;;g.;;'n :

NAVIGATING ROOM BOW MOORING CG’\IF

CONTROL CAR

Figure 1 - Typical Rigid Airship
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cotton cloth) provided a wind and weather cover. The lifting gas was contained
in several independent gas -tight cells, which were supported between bulkhead
ring nettings. The gas cells were partially filled at sea level, with pressure
height being the altitude at which expansion of the gas completely filled the
cells. Climb beyond pressure height, which normally was not undertaken,
necessarily required valving and irrevocable loss of the lifting gas to prevent
overpressuring and rupturing the cells. Generally, poppet valves with spring
settings for overpressure protection provided automatic pressure valving at
the pressure height with a manual capability also available. Both hydrogen
and helium have been used as lifting gases, with the latter much preferred be-
cause of its inert character. Heavy takeoffs* were never accomplished with

rigid airships.

The rigid airships manufactured by the German Schutte-Lanz Company
used wood exclusively for structural members. During 1911 to 1917 and even
prior to this, the German Zeppelin Company used aluminum in its rigid air-
ships. The first rigid also was of an aluminum construction. It is not exactly
clear why the Schutte-Lanz Company chose wood, but at the time of the World
War I armistice the company was preparing to use aluminum in future con-

struction.

The non-rigid (pressure) airship (see Figure 2) consists of a hull or en-
velope typically of a coated fabric filled with a lifting gas and pressured slightly
above ambient. Earlier non-rigid envelopes were coated cotton fabric while
the more recent configurations such as the ZPG-3W used a neoprene-coated

dacron. Dacron has a higher strength-to-weight ratio than cotton.

In the non-rigid, several ballonets - or air compartments - are curtained
off within the envelope. They normally are located forward, aft, and amid
ship. The maximum ballonet capacity is a function of the design pressure
height. The envelope is pressurized by ducting air for the ballonets from
the propwash or pumping with electric blowers through an air distribution

system to the ballonets. Dampers, air lines, and exhaust valves at the

* .
Heavy takeoff denotes aerodynamic lift in addition to aerostatic lift required
to accomplish takeoff.
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Figure 2 - Typical Non-rigid (Pressure) Airship

ballonets permit the envelope pressure to be controlled, and relative fullness
of the fore and aft ballonets permit trimming in pitch. As the ship ascends, the
lifting gas is expanded without gas being lost by deflation of the ballonets.
Pressure height is the altitude at which the ballonets are completely deflated,
the envelope at that point being 100 percent full of lifting gas. Further ascent
can occur only with valving of the lifting gas. It is possible for anairship tobe
flown so high, with consequent valving of the lifting gas, that upon descent the
ballonets are pumped full (of air) before the ground has been reached. At this
point, the airship can descend with envelope pressurization only by pumping
air directly into the lifting gas provided an emergency access route of air to
the lifting gas is available. Both hydrogen and helium have been used as a

lifting gas.

Rate of ascent with a pressure airship may be limited by engine power if
the ship is "heavy" but is structurally limited by the ballonet valves' capacity
to exhaust air. Conversely, rate of descent is limited by the air system's
capacity to pump air into the ballonets as the helium contracts with increasing

ambient pressure.
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While the car structure and engine nacelles on a rigid airship are extended
from convenient bulkhead rings and longitudinal girders, the car structure
weight on a non-rigid is distributed to the fabric envelope by catenary systems.
Usually, two identical internal catenary curtains, either side of the centerline
on the top of the envelope, tie to the upper envelope along two fore and aft Y
joints. Vertical tension cables from the roof of the car carry the weight to
fitting points on the curtains. The curtains spread the load to the upper en-
velope, deforming it slightly "out-of-round" at the Y intersection. A catenary
system around the car-lower envelope intersection distributes pitching or
yawing loads to the envelope. Fins on a non-rigid are cable-braced to finger
patches tangent to the cable-envelope intersections. Powerplant installations

on a non-rigid always have been extensions from the hard car structure.

Pressurized metalclad airships have been considered throughout the
history of LTA. The metalclad, as the name suggests, uses a thin metal
covering (historically, only aluminum was ever seriously considered)

rather than the conventional fabric covering.

The semi-rigid airship (see Figure 3) generally differed from the non-
rigid by using a nose-to-tail rigid keel rather than the catenary curtains for
distributing the car weight into the fabric envelope. It was still a pressure
airship and required slight pressurization to permit resistance of hull bend-
ing moments without envelope wrinkling. Its cross-sectional shape tended
more to a pear shape because the entire car weight was applied to the bottom

of the envelope.
The following subsections of the historical overview relate to:

1. Parameterization of design characteristics for both
conventional and unconventional LTA vehicles of
interest to the current study.

2. Results of historical markets and missions, costs
and operating procedures, and research relative to

past LTA activities.

T



Pressure semi~rigid

Figure 3 - Typical Semi-rigid Airship

3. Parameterization of the data presented in Item 1,
above, into the indices of efficiency of interest to the
current study.

4. Identification of critical design and operational charac-
teristics of past LTA vehicles.

5. Definition of 1930 state of the art (SOA), technically and
economically, relative to LTA vehicles.

6. Definition of 1974 SOA, technically and economically,

relative to LTA vehicles.

PARAMETERIZATION OF DESIGN CHARACTERISTICS

Rigid Airships

German

Tables 1 and 2 give the more important characteristics of all German air-
ships built up to and including 1920, except for a few built prior to 1910 that

fall under miscellaneous types. These airships are omitted because of their
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relative unimportance, since they cannot be classified as successful or import-
ant in influencing the development of German airships. From this data, Figure
4 has been prepared to show the technological evolution of both the Zeppelin
(rigid) and Schutte-Lanz (rigid) airships during this period.

At the extreme top of Figure 4, the year the first airship of a particular
Zeppelin type appeared and the L-Z number of that ship are given. Type let-
ters assigned to the various classes of ships are given in the third heading at
the top of the figure. Where several types include airships that have differ-
ent characteristics, these types have been plotted separately on each curve
(see H, H', H"; P, P'; and R, R', and R"). For instance, airships H, H,
and H" are the same particular letter type, but they had to be plotted separ-
ately since their characteristics varied and showed development within the
type. The designation of the Schutte-Lanz airships is included with the various

plots.

Curve A of Figure 4 shows the improvement that occurred in the impor-
tantuseful load-to-total load (gross weight) index. Improvement in the Zep-
pelins from a 20 percent factor in 1900 to a 65 percent factor at the close of
World War I represented a verry substantial improvement. Later airships,
German Zeppelins included, did not have useful load-to-gross weight ratios
approaching the 65 percent factor of the earlier Zeppelins. The early Zep-

pelin airships had higher useful load-to-gross weight ratios for the following

reasons:

1. They were designed to much less severe strength criteria,
especially with regard to aerodynamic loads on the hull
and tail surfaces.

2. They carried no electronic gear except a small radio.

3. Crew accommodations were extremely meager.

4. They carried no landing gear to speak of, no hydraulic
systems, no bow mooring, and no power boost for control.

5. Their gas valve complement permitted a rate of ascent

of only 6 meters per second.

Curve B of Figure 4 indicates that maximum speed capabilities rose from

8.94 to 37.01l m/s (20to 82.8 mph), with more than half this increase occurring

-1l6-



DATE 1900 '05°*08 '09 '10 "1 112 12' 13° 13" 14* 14* 14' 15 15' 15* 16* 17* 17* 17* 17' 17' 18" 19’
LZNO.1' 7 2 4 6 7 9 11 14 18 21 22 24 2636 38 59 62 91 92 95 100102 112 120
TYPEA A BB* C DD'E FF' G HHH"lI K L M N O PP°Q RRR"S T U VV'W X yy'

[T T 1 T 1T 1T 1 ] T T T l l
80 [~ SCHUTTE-LANZ AIRSHIPS PLOTTED THUS ---a |
(A) USEFUL LIFT/ 60 } LN,

TOTAL LIFT (%) 40[- L ] B - L
20 G e g gl iy =

(B) SPEED 80 - -
J S P Ve o
(MPH) gg‘_ s e i

1o F Vi
90
(C) HORSEPOWER PER n T1- PP T vy y
1000 CU FT 20 F NN S e L | lal/
50
Ay ' 1
1600 . D E F 6 H K L M N O Y v W

(D) TOTAL -
HORSEPOWER ' 200 [ 7
800

400 = o= ;r—-
=
2000 - A 5\
(E) CAPACITY 1600} .
(1000 CU FT) 1300

.- . -

4005 . o ,

poed cpun pmage oimes L

(F) DIAMETER SOf 1 4—d-- -
(FEET) 3052

720

(6) LENGTH ©40F AP C

560 =
(FEET) 8ok —J I \

80, FJ \c&/_j-——\f“

400
(H) NUMBER OF ;¢ [ . —, =

GAS CELLS , T+ == —

8
(1) NUMBER OF 4L s
AIRSHIPS BUILT

A

\

1\
\
[

T

A
\
.

b ! :

*1 .0 FT = 3.048 x 10™" m, 1.0 HP = 7.457 x 10 2

WATTS, 1.0 mph = 4.470 x 10" m/s

Figure 4 - Characteristics of German Zeppelin and
Schutte -Lanz Rigid Airships«*

between 1914 and 1918. Accompanying this increase in speed was a similar
increase in horsepower. The increase in horsepower is shown in Curve C in
horsepower per 1000 cu ft. Curves B and C show that, when airship type R
is compared with types S, T, U, and V, better aerodynamic efficiencies are

obtained for the latter configurations.
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Curve D shows the increase in horsepower that resulted in the increase
in speed portrayed in Curve B. Curves E, F, and G show the general evolu-
tion to larger capacity ships, with increases in both diameter and length oc-
curring. Curve H shows the number of gas cells as a function of airship type.

Curve I depicts the number of each type of airship built.

General data and characteristics relative to the two most notable German
airships, the Graf Zeppelin and Hindenburg, have been included in Table 3,
which lists all major rigid airships. Table 4 gives a detailed weight breakdown

of these two German airships and the other notable rigids.

British
The designers of Vickers Limited produced Britain's first rigid airship
for the British Navy in 1911. This ship had a 19,994 cum (706, 000 cu ft)
capacity, was framed of aluminum and incorporated swiveling propellers, and
had water recovery apparatus and mooring mast provisions. This ship was
wrecked through inexperience in ground handling, which resulted in halting all

rigid airship development in Britain.

In 1913, the admiralty again contracted for another rigid airship from
Vickers. After ordering work on it suspended once in 1914, the airship R-9
was finally completed and successfully flown in April 1917. The R-9 had a
22,656 cum (800, 000 cu ft) capacity and was used extensively in training crews
and developing the swiveling propellers and mooring mast inventions. The R-9

established the "23" class airships, and several 25,488 cu m (900, 000 cu ft)

airships were built,

The "33" class rigid airships built by the British took the name from the
German airship L-33 (broughtdown in Scotland in 1916) and were directly
copied from it. These ships had a 56,640 cu m (2, 000, 000 cu ft) capacity, and
one of them (the R-34) made the Trans-Atlantic flight to New York in May 1919,
The class "33" airships were the only successful rigids the British ever built,

and their success is reportedly due to the Zeppelin design.

The next attempt, a much larger ship - the R-38, was lost with all hands
in 1921 and stopped the airship program for another eight years, at which
time Britain designed and built the R-100 and the R-101.

18-
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These ships had a 144,432 cum (5, 100, 000 cu ft) capacity and a radical
design that used a few heavy longitudinal members instead of many light
stringers. The outer covering was unstable in the large flat areas between
these members and had to be pulled inward, which gave the ship a peculiar
fluted effect. This also limited the gas capacity and reputedly resulted in an

overweight design.

Great Britain finally discontinued further rigid airship development after
the R-101 was lost in a flight across France; the flight was started immediately
after an extra bay for increased lift had been added. The evidence brought for-
ward by the court of inquiry investigating the crash disclosed that the lift still
was not favorable and that the cell wires were slackened to further increase
volume before the last flight, which permitted the cells to chafe on the longitudi-
nal girders. The airship crashed due to a sudden loss of lift. The R-100 was
scrapped shortly after the loss of the R-101, thus ending Great Britain's rigid

airship efforts.

Table 3 compares the British R-34, R-38, R-100, and R-101 with the

other rigid airships of major interest.

American

American rigid airship programs started with the launching of the Shen-
andoah from Lakehurst Naval Air Station in 1923 and with a research project

in 1922, which was to result in the ZMC-2 metalclad airship.

The most notable American rigid airships were the Akron and Macon.
Table 3 compares the general characteristics of these airships with other
notable rigid airships. Table 4 compares the detailed weight breakdown of
the Akron and Macon (Macon data presented)* with detailed weight breakdowns

of other notable rigids.

Extensive technical data, analysis, design information, and test results
are available at Goodyear relative to the Akron and Macon airships but seem-
ingly are not of general interest and accordingly are not included in this his -
torical overview. Should any of this data be used subsequently, it will be

presented at that time.

*Akron was slightly heavier.
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Figure 5 summarizes the development of the rigid airship and shows that
various rigid airship projects have continued at Goodyear. The detailed weight
breakdown resulting from extensive design and cost analyses conducted in the
mid-1940's by Goodyear relative to a 283,200 cu m (10 million cubic foot) air-

ship for both passenger and cargo transportation is included in Table 4.

Non-rigid Airships

German

Table 5 summarizes the characteristics of the major German non-rigid
airships, which were all constructed prior to or during World War I. The

Wullenkemper organization has recently designed and built non-rigid airships.

French

Appendix A of Volume IV summarizes the characteristics of several

French non-rigid airships.

British

Although the British preceded the United States to some extent in the de-

velopment of non-rigid airships, there appears to be no significant differences

in the configurations; thus, British data are not presented.

American

America, by far, has been the major builder of non-rigid airships and,
with minor exception, the only builder of them since the close of World War I.
Appendix B of Volume IV summarizes the non-rigid airships manufactured by
Goodyear, which has been the major supplier. Table 6 summarizes the charac-
teristics of various types of American non-rigids.

Another American non-rigid airship of interest is the metalclad ZMC-2
built by the Aircraft Development Corporation for the Navy. The character-

istics of this configuration are also summarized in Table 6, with added detail

in Table 7. As pointed out in several references to the ZMC-2, it does not
compare favorably with the conventional construction because for smaller sizes
the minimum gage restriction relative to the thickness of the metal covering

severely penalizes the metalclad.

=22 =



A1o3s1yg diysaty piSty juedyiuldig jo Arruwawing

S$31gNLS JIWONODI3

GNV "AS0TONHI3L ‘NDISIQ SNOIYVA @=—————= (NOOVN)

(NOH v} _

{HVOONVNIHS) U (96-27 WOH3)

(621—27)

G aan8t g

$3DHNOS IHLO0 SNOIYVA ANV 8 IDN3IHII3Y WOH 4 vivd
=18,

{{Z1—=271 HONOYHL 82~ 21 S_Om&

(o) |V

(8ey) QA_IR_TN._ WOoHd)

(9€H)

———(9.-277 WOH4)
il

Voo :um WOoYd)

(SSv10 X £2) ¥
:mm.ﬂtllad elE)]

(08H) @ %

(£C "ON SHINDIA}
1
(Pl "ON SHINDIA)
|
(t "ON SY3INDIA)

{e€y)

(00Ld)

1 SdIHS NYWY39

(9z1 "1Z1 ON— ‘vl ‘ELL ‘ZLL ‘90L mn rall
1||mm_:__4<0
‘11 ‘ot

(L 'ei

:N— 27) GN_.tNi

Py

ANV LEL=ZT)

{S123r0oyd Zgl
{og1—-21)

Ve /e %

—_————_——— _

l {343H NMOHS LON SdIHS NYIWH3I9) ZNYT1—-3L1INHIS

SdIHSHIVY
NV IIHINY

(P1—2Z71 WOY4)
|
(2~271 Wod3d)

_ — S,

dIHSHIV HSILIYE |

‘'8 'L '9—2 ‘

| o

{ELL—81 ‘91 'SL ‘v 'ZTL 6 'S—Z7)

(NDIS3Q NIT3dd3Z IALLINIA3Q)
]

AVIDOHIWWOI NYIWY3ID
'
AHVY1IIAN NYIWHID

L8l WOYd

(1-znl

(NIvdL n:I_wm_< NIT3dd32)

(NDIS3A NOSdN)

_

Zowz) Je
[\ 4————— S3IANLS QVIDTIVLIW wao_m<>|ml I 2V _
{3TVAN3TO 40 ALID-3LVS)

ov6l

(V413 ol6i

0e6l

(ZON ZHVYMHOS)
|
(1 "ON ZHVMHDIS)

S1d3ONOD

| sdiHsuIv Nvwy39 |

5881 WOHd4 Ld3ONOD

r|_|| 6481 ‘'NVYWQ3LS

avi10Ivi3n

0681

0061

0961 0561

0L61

23

GE IS

ORIGINAL PA
OF PGOR QUALITY



/W 01X 0Lp 'y = udw o T ‘swem 01X 1687l = dHO'L X | OIX 9€5y = WALO'T W . 01 X 8y0°€ =W 0 T
p#iaTdwo) I3aaN  pZ-£2-2Z-T1d
(16T "8 1@ .
§ e 0795 uspooM papetd z-¥| 096 yoeqhew!y |o0-cs [009°6¢ |ooc’ve |ecv9 | 81s| 0o0o‘o0T’T Lz-1d
4 .
ST6T 792 39 §'0s uspooM papetd z-v| ov8 | uoeakew|y [6°8p |00Z'sE
anoay  [000‘ze {e-z9 | zis| 000°090°1 9z-14
ST6T el .
' mmw uapooy| papetd p-z| 0zy | uoeqhen|z |z-tv fooz’er |ooo‘ze |8'cs | e9c| ooo‘oce sz-14
uspood papeld prz| 09¢ | uoeakew|z 000°vz |z'6% | zoe| o0oo‘ese 1z-14
16 Janmm . -
SSﬂR umm w%" uopooM peperd v-z| 09¢ | wuowakew|z [v-6z Jorz‘tc jooc’wz |z'1s | soe| ooo‘eos 6T-1d
Z167 ‘1 dod z'op| 19938 e3etd| pepeta v-z| 09¢ | uoeghen|z |06z 09T’  |ooz’Tz {z'ev | sezf ooo‘rTe 8T-1d
¥T6T ‘6ny T293S 23eTd) Popeld p-Z| OvE | uoeakewiz |;-gz Jo9tT’9  |000°¥Z |s*2s | 6Lz| 000°€sE L1-1d
081 uspoom| peperd p-z| 09¢ | uoeakew|z {z°T€ |ov8’C  |000'vz [6°0S | 80€| 000‘€SE 97-1d
EI6T ‘Lz a3 €.17|  1aa3s oqerd| peveta #-z| 09¢ | uowakew[z | ¢ c+f : -7+ -loo0’vz |stzs | e9z| overese ¥1-1d
NNMaﬂ £ 2y L Z'I¥| {3235 23erd| poperd v-z| oot | uoeqRew|z |z'sz |ovs‘e 00Z'6T [9°Ly | 65T| 000°z8Z €1-14
LL M% owu 31 93 2B S'€E} 15335 a3eta| popers v-z| 0zz ‘o'v'N|z |v-ve {o0o9'9  looz‘st |6-sv | s9z] 000‘z8z Z1-1d
0161 ‘0t aad -y F] 80| 1ee3s s3e1d oevera v-z| ooy | Surazonfz |z-sz [osL’s  |ooo’vz [ev0s | sez| ovorese 11-1d
uspooM papeta z-T| 0§ ‘o°w'N|T |v-6s {oze'z |oso‘v |ev9z | tet| ooo‘09 6-1d
‘or o .
omMMH.OMN.uwm 9T 03 2 3.Iv1 tee3s ejerq pepera v-z| ove yoweqAew|z ¢ te [o9tT’9 00.’61 605 | €sz| 000’062 8-14
0T6T ‘ot ued o1 of o £.2f o11qeq papeld y-z| 0z -o-w'N|z 1979z |ov8’s lo0z’sT |6-sy | 9cz| ooo’s9z L-1d
5067 ‘g om Ty s-ce otaqed] pspeld ¢¥-Z| 0Z¢ "9 v'N|Z [5 0% {00979 00£°91 [v 0¥ | 6zZ| 000‘0¥T 9-1d
P08t oer 71 4 0.9z oriqed] pepels £€-1| S¢ zaTwrealT |1°8€ |02E°T 09v’¢ |€-9z | TET| 000°TS 5-1d
9z otiqes papetd £-T1| 0L | Tstureq
oxysny, T {v9c |ooz'z  [o0so‘s |z'sz | w9t| 00068 v-1d
6067 ‘8T asd 91 o3 z17 0'z¢ otaqes peperd ¥-1] 027 ‘orvNiz |6°2z ooty [oos’st {v-ov | 6zz| oo0‘cee £-1d
8061 ‘g1 bny 9 0'8z otaqed] pepera v-1| 58 1atwrea|1 |5 9¢ [oos‘e  Joov‘s |T-we | 61| 0007 TET z-14
6061 ‘1z ‘3degy g 03 9 | 0'(7 sraqed) pepeta p-1) s 1atwtealt | ce | os8‘z [009‘c |stoe | c6T| 000’0zt 1-14
9061 ‘9z Keiy 9 0°tz stiqes pspetd ¢-T| <8 aatutea|t {o-0% | 00z’z [00S‘s |z-6z | v9T| 000’18 Ad
Ied
paweq 10304 Z161 Araeg 9 s-zz oriqeqd papetd p-z| 022 orw'Njz | - |00 ¢ - [oozrvz |evss | 9vzl] cooess paeyons
peT3jurWSTIp( _ .
pue 37Tngay(| TT6T ‘€2 uwn sry teoad PR woy| 08y | aewwrealy | - - - - - - ocorze [eve | wee| oo0sey || FITANES
adX3y :
19p116 100N 6061 v 0761 uspood pepera z-z| 0§ zotpwfT | c |+ ¢ - ¢ |oov'y [arcz | set| ovo’se Y3nots
x
B o 2z | o & w 9 g g13s e g | 2 ) Y e
n LY a m ® (24 a a o [si L] -] &t o 3 o @R
" <Q ® o o ® m. - o3 [ D rh oo S - 0 o -t
Q ] Mo o n 2 2 3 e e o ® o a a o
" ao an ~ [ o} [ ® o S~ o - n o -4 [ o
< 9 o @ @ N ® 5 Bs 8o
Lo L] < 4 = - -~ b m. m. o] ¢ 24
= Sore - 4 ] ] - L] - e
3 ) YT x " 1 o ® o
el . "q_w “ m. o .P - ] o a ]
Qs = saarredoag R ® IS 2 - e
0w - " 3 o+
€ " u

(T ADNTUFIAY) SATHSYIV QIDIY-NON NVWNYED - ¢ ATAVL

OF POOR QUALITY]

ORIGINAL PAGE IR

w24 -



3uawdrnbas £i1®ITTTU pue dFuo0112873 TTe jo paddyizs

Wnd o 01 X268°2 = 20" 's/w 1.0 X $¥1°G = 30Uy Q '{
HUX LSy ¥ =dHOT "By 1-01 X 9¢5°p = war o1 ,cpﬂ-oﬁ X 8%0°¢ =301 (¢)
PEIIRI3N 2-DNZ pU®
- v 2dAL 1deoxa AaeN 03 sdiys parddns 1e24poon  ‘J pue § sadULIBFIY WIOI} eieq (z)
UOISSIUI [eINJE UL PAzI[UIn AJ[ENIDE 2I3m SIN[EA SNOLIBA SE uonjeyut Jusdxad
10 (A31and) 3517 wmtesy jo anfea a8uts Aue o3 puodsairoo jou op santea Py ssoin () SILON

‘sem

PET2>TEI2H

3jo-syey Aamap P

adoyaaua uo ulys 3ysyu Ted1132a12 u:O;uaBU
‘*3*1¢3y8rem dTsRQ IJEITPUT s¥sayjuaied uyr sisquny q

se8 Tany 103 13 no 90/ ‘1S S3pnI2UT 2wWNToA TE3O] &

. . ¢ ¢ ‘ ‘ ‘ . ‘ 3J3jo0-93%e3 3® [InJ 2001
00%“TT 03 008°TT 000°6 000°0T ©3 000°‘€T 00€‘L 0008 00811 005°‘8g -—- (39U0TTRE) (13)9PNITITY XER
Ig) pajeindilay (sen 13ng) 91 R N e sunyop 3adoysaug
62 °3 o¢ e 9z 01 g¢ oz 7otz stoe €2 00T * F@ntos 39uoTTed Z0OT

. 01 . . . a1 ¢ . . . . . . amnTop
SEY0° 0 9%0'0 9%0°0 SY%0°0 0%0'0 9900 S6€0°0 Y00 €%0°0 9500 X3dag T98T5R
$°0¢S 03 ¢'gg ——— siouy ¢¢ e —— £°91 1€ 597 -=- asyni1)-
(2R A ¢ 03 701 §9°¢ 6S CERRS -— 9°'01 8T 6°0T -~ peads dor- (ay)sduszinpug
0¢s 0¥ oS 03 0% - 8Ly S€ ot - 88In1) -
69 49 §°L9 03 ¢g €€ $°9¢ 49 T —— X®H - (S3iouy)paads
0TT‘T 062 00Z°‘t °31 009 oy oy 00¢€ 001 0y1 13modasioy
0SY‘0T 03 06 059 006°¢ —— - -—- 09yl 00¢ - (4T) 1@eng Temioy
(21meudg + d2¥3IE®IS)
oSy 8% 03 069‘¢cy 006°L 00667 ©1 09507 ovn‘e 0se‘zt 0§9°11 onn‘s BEY ‘L (4T) 33¥71 1®B3I0L
00S°‘¢ 03 006°¢ 006 00T -~ -— 000°1 —-— -—- --- (qT) 3311 21mEULQ
0S%‘€T  ©3 05£°0T 00L°T 00T‘L 031 89/ ¥88 STT‘Y 0s0'y 0v8°‘I 0sZ'T (4T)2F3I®IS - 33371 [njasq
00S°TE 03 008°62Z 00L°S 00€£°07 ©3 9/8°ZT 9561 SET L 009‘¢ 009°¢ 8819 (q1) 43dwy 3yBrepm
0S6°%% 01 0GT‘0Y 009, 00%'Lz ©°3 095°0z ory'e 05€°11 05§9°T1 onn's A (4T1)219®3S - 313¥7 Ssoin
4 [3 z z z —_—— z k4 —_—— s3ja2uolTeg jo -ON
000°‘0TZ ©3 000°‘€61 692°6¢ 00S*6TIT ©3 007401 000°¢ 007‘6¢€ 0§Z°SS 0ST 61 ——— (33 mndy)smnyop 3I2uo[Teg XBK
000°SZTL ©3 000°LY9 000°€ZT 0007957 ©3,000'6TE | 0SE€‘SE | 000°€8T{ 000°T8T| 000°%8 | 000°0TT (33 n3) =wnTop T®30y
(Y96T-€96T) (E¥6T-8E6T) (S%6T — TE6T) (6T61) (S€6T) (8T6T) (97T6T) (ST61)
PETT-K 1 SET- 03 1=} vy 9 2 L4 v 83138113312 1IRYD

SOILSTMA LOVIVHD JIHSYIV AIDI¥-NON NVOIYANWY - 9 T1dV.L

ORIGINAL PAGE I3
OF POOR QUALITY|

«25=



s.
55
&5
53

58

(<} PeIdIeIaN 2-DWZ pue
m _ v adA1 1da>xs AaeN 01 sdiys parddns zeakpoon -z pue  sedusivzeYy woiay eyeq  (7)
(=) % UOISSIW [en3d® Ul PAzZI[un A[[BN1d® 3I3M S3n[RA <NOIIRA <R HOWRIFUL Juadiad
10 (A3rand) 3317 winiyay jo anjes 213urs Aue 03 puodsszaod j10u Op sanfea PI[ ss01) () :ILON
PRIAIRIAN
J30-9%e1 Areay °
adoraaua uo ufits JyFw [es1135913 INnOYIIHM 5
juawdinbs Arejr[is pue D1UOIIdIY3 [[® Jo paddrris ‘51 ‘3y3iam diseq 81BOIPUL sisayjudsed ut sIsquUnN q
sed [any 10] 37 ©d 0L ‘1§ $2PN[2UT FwWnjoA [ejoL e
‘ ‘ . ‘ ‘ f ‘ . 330-3%®e3 1® 110J %001
000°s 005*¢ 600°0T 000°0T 00976 00¢ 6 0056 008701 (19uored) (3)9PMIMIY XeN
x awniop adojaauy
3 9°0¢ z°92 692 Lst 952 95z 8z 001 * Stunyoa yeuoited 4001
16%0°0 80%0°0 SEX0'0 (z€0°0)0%0°0 (Z€0'0)S5%0°0 (€8€0°0)6%0°0 (6£0°0)6L%0°0 9%0°0 QUINTOA
Odwy Iystam
6°0T 0°€T ST LT §3% Q¢ 3% sI1Y 0T
-—- 8°8 --- SI¥ ¢¢ 3® say QZT . . asmn1y) -
831 0¢ 3I® siIYy QT 08 $31 8¢ 3® [°cq 068 s8 paadg dog, - (1Y) asuernpuy
9°8Yy S Sy 9¢ 13 .- oY oY (134 2sIna) -
809 0°0§ (311 42 z8 [ 174 44 [ 74 XeW - (s30W0{) paadg
oyy 0zy 0s€ 0s0°¢€ 0ss‘t 009°T 009°1 009°T 1amodasIoy
pOVT LE plL8'ST p00Z°0T p 006°Z1 089°cT
00 ‘T 008°T 00T I ss6tz zLets S69°Y 6T0°L 089°‘9 (qr) 1904 (eWION
(orwreudq + d1eIs)
016 TT 0eg‘21 9216 008°Z61 STT°S0T ET6°L9 €T6°L9 7229°8¢ (ar) yrT telol
- oey 0S€ 000°ST 005°01 000°9 000°9 000°9 (qr) T orweudq
LZ1'e 059°¢ 9T (91€°£8)098°09 (E€0°BEY6Y0° LT 919 HZYIHET 9T [(LO6°€ZITTI ST olvel (qr)o1®Is - YT My2asn
STT‘6 0sz‘8 00%‘9 (78%°06)0%76°9TT |(285°95)995 L9 Keezicerere ey (900°8€)Z0€E ‘9" Zs10Y (an) fidwyg ySram
[AXANA1 006°TT 9LL°8 008°LLT ST9 %6 €T6°T9 £€T6°T9 77918 {qr)o1qeis - 3317 ssoIn
z 4 4 € k4 Y N4 % sjauoiledg jo °‘ON
009 ‘0§ 0S6° 1Y 009 °‘8¢€ 06L°06¢ 007 ‘€8¢ 00€‘L%T 00€°LYZ 000°€0Z | (37 n2)3WIN[OA IBUOI[RE XEW
002°202 00£{°z02 00€“L9T 0000087 000°06%°1 000°S.6 000°SL6 000°S¢L8 (37 m2) JWnIOA {ei0l
(6Z61) -8961) ( -£961) ~ _ _
e>piamy | 11 ®IqQERIOD Apnig udysaqg 0961-6561) (LS6T-SS6T) (LS6T-€S61) 323.
¢ INZ > 02-29 V6T1-Z9 ¥3LD n.ﬁno:N anlumN n:u:umn AN(umN 1-942 N §213812930RIRYD

(QEANILNOD) - 9 14Vl

-26-



TABLE 7 - ZMC-2 CHARACTERISTICS (REFERENCE 7)%*

Length of Hull ....... et e esssee et sttt aeenenan 149 ft. 5 in.
Diameter of Hull (max. ) ceccessasana cessensnens 52 ft. 8 in.
Fineness Ratio ....... e eecensese s s as o mana ceee 2.83
Displacement of Hull ...... ceeesreen e ceoson s 202,200 cu. ft.

Total Ballonet Displacement e..s.ceeecscssasscocs 50,600 cu. ft.
Front Ballonet Displacement ...c.ccoceesscescscess 22,600 cu. ft.
Rear Ballonet Displacement ...ceeesesscsnscceoss 28,000 cu. ft.
Ratio of Ballonet Volume to Hull Volume ....... 25%

Thickness Of SKin ....ceeeeesecccsscsorsenassss 0.0095 in.,
Length O0f CaAr .e.eereersoeasacsscesscssonassasss 24 ft.

Width Of CAr tiiveceveeesosossossansasaannsseasss 6 ft. 6 in.
Number of Air Valves ...ccccasseccecsscssncasss 3

Number Of Gas ValvVeS ceiccescescaccncossscnanne 2

Number O©f FinS ..eeseserssccsssscsonscsssnsnseas B

Total Fin Are@aA ..veveecececcscscsccseanncssasasnass 440 sqg. ft.
Total ElevatOr Ar€a ..etseescessssscceasssssssss 190 sqg. ft.
Total RUAdEr AY@A .v.::sescoscessannsccssoosesss 85 sqg. ft.
Total Automatic Rudder Area .:.eeceecsscasssssas 95 sg. ft.
Engines (Wright Whirlwind J-=5 ...ccceevevnccsas 2

Power at 1,800 r.peM: tiveeecocccoscssassesasnsss 440 h.p.
Propeller Diameter (all metal) ...cccesveesesss 9 ft. 2 in.
Lineal Feet Of S€aAM .vvveereeconnaoscsnnanannns . 17,600 ft.
SUrface AXea .eeeeesvecsessssssnecssssessansssss 19,436 sg. ft.

PERFORMANCE DATA OF THE ZMC-2 METALCLAD

Gross lift (100 per cent, inflation with 92 per cent,

pure helium at 60 deg. Fahr. and 29.92 in. Hg.). 12,242 1b.
Weight EMPLY teueeveerccesessosssssssossssssssosssssssne 9,115 1b.
Useful Load .ieevevenenocssnccsnsacsasans creesenanae 3,127 1b.

Crew (three) ..... ceseceaan e 600 1b.

Fuel (200 gal.) +.eeeeecscaeeeees 1,200 1b.

0il (25 gal.) ceveeneeocnnsennes 200 1b.

Ballast (50 gal.) seesccscsccens 420 1b.

Passengers and Cargo .ecsesscces 707 1b.
Range with 250 gal. (Cruising Speed) ....... tee s e 760 mi.
Maximum Possible Range (still air) ...cceeeeseen. eses 1,120 mi.
Maximum Speed at 440 h.P. cvieeecescecesssecansssese 70 m.p.h.
Cruising Speed at 220 hiP. ceeeriececsaccenscnncnss .. 56 m.p.h.
Static Ceiling ..cvveiveenne e eecacascennsnnns ceeenn 9,000 ft.

- - . 3
*1.0 ft = 3.048 x 10 ! m, 1,01bm =4.536 x 10 ! kg, 1.0mi =1.852 X 10" m,

- -2
1.0 mph =4.470 x 10 Im/s, 1sqft=0.0929sqm, 1.0cuft=2.832x10 " cum

YA



This minimum gage penalty disappears with increasing size. The Aircraft
Development Corporation in the 1930's prepared proposed configurations for a
variety of applications and compared notable rigid airships as illustrated in
Table 8. The data of this table indicates the MC-72 metalclad compares
favorably with the Akron.

In Reference 9, C. P. Burgess compares the Aircraft Development Corp-
oration's proposed MC-74%* with the Akron. Burgess terms the MC-74 esti-
mate "an honest and careful piece of work" but states in light of experience
that he believes the actual empty weight would be about 15 percent over the
estimate. This would bring the 209,568 cu m (7,400, 000 cu ft) MC-74 to
essentially 107, 049.6 kg (236, 000 1b). Burgess then shows that the reason

TABLE 8 - COMPARISON OF AKRON (ZRS-4) AND
PROPOSED MC-72 METALCLAD 2

ITEM COMPAgATIVE DATA
ZRS -4 MC-72
Displacement (Air), gt.3 .................... . 7,250,000 7,260,000
100% Gas Volume, ft.” ...t iminietenneoeneons 6,850,000 7,080,000
Total Lift, Helium Lifting .062 1b./ft.S3,

95% full, 1bh. +vitienreeennenenanonnnsse oo 403,000 417,000
Weight Empty, 1lb. ...iiiiieneennnn. e eer s raene 233,000 249,000
Useful Load, 1lb. .......c.... et e e et 170,000 168,000
Useful Load/Total Lift ...,.... et ecci e e e . 42,2 40.3
Useful Load per 1,000 £, 3 Displacement, 1b. . 23.5 23.2
0 ol 0 of - Maybach (8) [Maybach (8)
Horse-Power ......ccceeeve ce e ee e Cr et e e 4,480 4,480
Maximum Speed, M.pP.h. ..t ii it enmennnnnes e 84 84
Useful Load per Horse-Power, lb. ......... eeen 38.0 37.5
Number of Gas Cells .....cviveeererennnes ceeen 12 11
Lift of Largest Cell, 95% full, 1lb. .......... 57,000 49,000
Lift of Largest Cell/Useful Load ..... e e e . 33.5 29.1
Lift of Largest Cell/Total Lift ..uveueeeeeness 14.1 11.7

a1.0 ft = 3.048 X lO_l m, 1.0 1bm = 4.536 X 10~ kg, 1.0 HP = 7.457 X 102 watts

1.0 mph = 4.470 X 10" m/s, 1.0 cu ft = 2.832 X 1072 cu m
bbata from reference 7 which recognized the Akron data as

unofficial. Akron data not changed from values of refer-
ence 7 since differences are not substantial,

"

5
The MC-74 (slightly larger than the MC-72) has the same air volume as
Akron.

=28



for thé MGC-74 empty weight being less than the Akron (110, 147.69 kg, or
242,830 1b, is the value Burgess uses) is not due to inherent advantages in
the metalclad design. He states that they differ because of such items as
lighter engines. In Table 9, Burgess compares the weight estimate of the

Aircraft Development Corporation with his own relative to what is basically

termed nonpropulsive structural weight.

Burgess believes the comparisons favor the conventional rigid construc-
tion by about 1416 kg (5000 1b) but the metalclad has a slight advantage in empty

weight-to-gross lift ratio. In any event, Burgess' comparison supports the basic

TABLE 9 - STRUCTURAL WEIGHT (POUNDS) OF

AKRON AND MC-74 (REFERENCE 9)x*

AKRON MC-74 MC-74

(actual) | (estimate) (+15%)
Hull plating or cover .........eee.. 11,721 42,032 48,337
Longitudinals .....eiiieneinneeennns 22,641 12,613 14,505
Main frames .....c.veeveeeeeenannons 37,101 27,548 31,680
Intermediate and splicing frames .. 12,067 3,974 4,570
COrridOrS s vuieennenereneneesononnnss 8,217 5,485 6,308
Shear wWiring ....iueieneeneneeenenns 5,200 -—- -—-
Gas cell wiring .....iiriieninnnnnn 3,750 - -—-
Cover Wiring ...eieieeenrerorennasas 1,905 -—- -—-
Miscellaneous structure ............ 2,820 2,713 3,120
Total hull structure .....c.cceeeee.. 105,402 94,365 108,520
Gas cells, valves, etC. +..... Cesens 25,127 19,239 22,125
Blower system ...... Cee s eseana Ceeeea -—= 4,065 4,675
Total comparative weights ......... . 130,529 117,669 135,320
Comp. weight/gross lift ....... s 32.4% 27.4% 31.6%

*1.0 1bm = 4,536 x 10"~ kg
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contention that the disadvantage that smaller metalclads have due to minimum
gage considerations all but disappear when considering airships of the Akron

and Macon size. ¥

Although the ZMC-2 metalclad was used for 12 years, the airship never
flew an extensive number of hours (about 2250 total). There are perhaps two

reasons for this:

1. Extreme unsteadiness in rough air due to exceedingly low
slenderness ratio (in order to attain maximum structural
efficiency) and the small size of the fins

2. Available funds in the Navy were apparently being directed
to the more conventional rigid LTA configurations rather

than "experimenting" with new innovations.

In a later article (see Reference 10), Burgess suggests altering the slen-
derness ratio to attain a compromise between structural efficiency and aero-
dynamic performance. In this same article, Burgess establishes the approx-
imate weights and principal characteristics (see Table 10) of what he terms
an ultimate airship (for 1939) that has the same air volume as the Akron and

Macon.

Burgess's suggestions relative to the nature of the ultimate airship in-

clude:
1.  Using the metalclad construction with no compartment-
alization.
) ok
2. Using 15 percent ballonet volume.

3. Reducing drag of the Akron and Macon by 30 percent by
such approaches as placing the car in the nose of the air-

ship and the air scoops for the ballonets in the nose area;

Based on material properties of that point in time.

¥k
25% ballonet volume is more typical for non-rigids, but Burgess suggests

that during descent following an emergency ascension above pressure
height that air be pumped directly into the helium with subsequent purifi-
cation of the helium being required. This emergency provision also is
normally available on non-rigid designs.
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using the metal hull for cooling the helium, which in turn
is used to cool the radiators and water recovery apparatus.
4. Some minor improvements in specific fuel consumption

and propeller efficiency that have since been realized.

Since the Burgess configuration has an empty weight of about 60 percent
that of the Akron (which has the same total displacement) and a 75 percent
greater useful load capacity, the configuration should be considered in the

conventional LLTA parametric weight studies.

Burgess was clearly impressed with the potential of the metalclad airship
but expressed concern relative to manufacturing costs of the larger metalclads.
Estimates by the Aircraft Development Corporation during the 1930's (Refer-

ence 7), however, do not indicate excessive manufacturing costs.

In Reference 11, Adm. Rosendahl states that flying the ZMC-2 was a "very
tricky" proposition due to sudden changes in buoyancy resulting from the rapid
transmission of heat to and from the helium by the metal hull, which was in
direct contact with the helium. Other considerations tend to moderate the
thinking that the metalclad is a concept without fault or shortcoming; these
considerations are discussed in the parametric analysis subsection of this
report. This is not to say that there are not viable solutions for those prob-
lems of which we are aware or for those problems that are unknown. With

the metalclad, however, all aspects of its design, manufacture, and operation

must be carefully considered.

Table 11 gives a detailed weight breakdown for the ZPG-3W as configured
for its aircraft early warning (AEW) military mission and with its military

equipment stripped.

Semi-rigid Airships

Table 12 summarizes the characteristics of the German semi-rigid air-
ships. As in the rigids, a general evolution to larger, faster, and at the same

time more efficient configurations can be seen in this table.
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TABLE 11 - DETAILED WEIGHTS FOR ZPG-3W WITH AND
WITHOUT MILITARY EQUIPMENT (REFERENCE 13)*

Item Weight (pounds)
Weight empty (total) 67,566% (56, 582)%

Envelope group (dacron}): 21,986 (21,986)

Envelope 12,690

Ballonets 2,211

Airlines 514

Car suspension 1,414

Bow stiffening and mooring 1,559

Fin suspension 377

Car fairing 484

Access shaft and walkway 441

Miscellaneous 2,296
Tail group 3,701 (3,701)
Car group 4,570 (4,570)
Alighting gear group 1,190 (1,190)
Pressure group 2,076 (2,076)
Ballast group 750 (750)
Surface control group 1,230 (1,230)
Outrigger group 880 (880)
Engine section and nacelle group 1,446 (1, 446)
Propulsion group: 8,307 (8,307)

Engine installation 3,527

Accessory gear boxes and drives 207

Air induction system 34

Exhaust system 135

Cooling system 322

Lubricating system 484

Fuel system 2,160

Engine controls 106

Starting system 75

Propeller installation 1,527
Auxiliary power unit 760 (0)
Instruments and navigation equipment group: 580 (580)

Instruments 486

Navigational equipment 94
Hydraulic group 430 (430)
Electrical group 3,176 (794)
Electronics group ) 12,162 (4,320)
Furnishings and equipment group 2,164 (2,164)
Air conditioning and anti-icing group:

Equipment group 1,363 (1,363)

Air conditioning 1,307

Anti-icing 56
Auxiliary gear 795 (795)

+Numbers without parenthesis refer to the ZPG-3W as configured for military mission.

#Numbers with parenthesis refer to the ZPG-3W without milita ry cquipment,

*1.0 lbm = 4.536 x 10" kg
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Table 13 summarizes the characteristics of two notable Italian configura-
tions, the Roma and the Norge, as well as the American RS-1. The historic
flight from Rome to the North Pole in 1926 by the Norge is reported in Refer-
ence 12. Appendix A of Volume IV summarizes the characteristics of other

Italian semi-rigid configurations.

Analysis of Data (Rigid, Non-rigid, Semi-rigid)

The rigid airship data from Tables 1, 3, and 4 have been plotted in Figure
6 in the form of useful lift-to-gross lift ratio as a function of air volume.
Figure 6 also shows the same ratio for the airship that Burgess in Reference
3 refers to as the ultimate airship, as well as the 1944 Goodyear design for a

290,280 cum (10,250, 000 cu ft) rigid
Several factors are apparent from Figure 6:

1. The British R-100 and 101 do not compare favorably with
the other configurations, which is why they are often re-

ported as being overweight.

1. R-34 6. GRAF ZEPPELIN 11.  HINDENBURG
2. R-38 7. R-100 12. MOST EFFICIENT OF GERMAN MILITARY
3.  SHENANDOAH 8. R-101 SHIPS OF WW I.
4. LOS ANGELES 9. AKRON 13. ULTIMATE AIRSHIP BY C.P. BURGESS(1937)
o 5. LOS ANGELES 10.  MACON 14. 1944 GOODYEAR DESIGN
: 12
o &
0.6
2
os d /- HYDROGEN INFLATION GAS
b Y 194 ()] 1
= 1 i b —0 40
0.4 o a
3 g _ 9,10
8 3 HELIUM INFLATION GAS
< 0.3
- 7 o LEGEND:
e 8 O HYDROGEN SHIPS
= 0.2 1
= O HELIUM SHIPS
)
L0
] Note: 1.0 ft = 3.048 x 10°' m
0.1{ ] 1 I
3 4 5 6 7 8 9 10
* SAME AS AIR VOLUMF. CUBIC FEET X 107

*
AIRSHIP TOTAL VOLUME- CUBIC FT X 10'6

Figure 6 - Useful Lift-to-Gross Lift Ratiovs Airship Volume
(Past Rigid Airship Configurations)
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2. German military rigids at the end of World War I exhibited
much higher useful lift-to-gross lift ratios than any air-
ships that followed.

3. The significant technology advancements incorporated in
the Akron, Macon, and Hindenburg rigids are not apparent
because the hulls of these configurations were noticeably
stronger (and accordingly heavier) than prior designs.

The necessity for the added strength resulted from flight
experience with the earlier rigids and the wind tunnel

testing associated with these most recent airships. The
relative hull strengths of the more notable rigid airships
are provided in a subsequent subsection of this overview.

4. Hydrogen-filled airships have a superior useful lift-to-
gross lift ratio than helium-filled airships.

5. While the two lines portraying the "average" useful lift-
to-gross lift ratios for hydrogen- and helium-filled air-

ships are not exact, they generally illustrate:

a. Hydrogen filled airships generally have exhibited
useful lift-to-gross lift ratios ranging from 0. 45 to
0.50.

b. Helium-{illed airships generally have exhibited a
useful lift-to-gross lift ratio of about 0.40.

The ratio of these values is slightly greater than the ratio

of the lift of the gases although not significantly so.

6. The proposed 1944 Goodyear design has a useful lift-to-
gross lift ratio comparable to prior experience but is
somewhat improved in view of interim technology advances.
The column entitled "Percent of Total" in Table 4 basically
shows the areas of the design in which these improvements
took place.

7. The improvement associated with C. P. Burgess' ultimate

airship is readily apparent.

The empty weight-to-gas volume ratio better attests to the efficiency of a

given past configuration than the useful lift-to-gross lift ratio. This volume
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ratio measures efficiency in that it considers the total "cost" to achieve a lift-
ing capability (empty weight) as well as measures the total lifting capability
achieved (the gas volume). This parameter also removes the effect of the dif-
ferences in lifting gases and conditions of comparison (percent inflation, purity
of lifting gas, and temperature of lifting gas). It also is one of the better
methods to compare past rigid, non-rigid, and semi-rigid configurations. It
is, however, somewhat unfair to the recent non-rigid configurations in that it
does not account for the benefits derived by heavy takoffs but does account for
the penalty paid in terms of the increased landing gear weight required to per-
form a heavy takeoff, since the gear incrsases the empty weight. The lower

the empty weight-to-total gas volume ratio the more efficient is the configura-

tion.

In Figure 7, the empty weight-to-gas volume ratio is a function of airship
gas volume for the rigid airships of Figure 6. Some of the same conclusions
in Figure 6 are still discernible but generally speaking the hydrogen- and

helium-filled airships are very comparable in Figure 7.
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Figure 7 - Empty Weight-to-Gas Volume Ratio as a Function of Gas Volume
(Past Rigid Airship Configurations)
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These data reflect different design criteria such as design velocities.
Note, however, that the hull strength of the Akron, Macon, and Hindenburg

is very similar (see Page 110).

The non-rigid and semi-rigid data from Tables 5, 6, 12, and 13 have been
plotted in Figure 8 in the form of useful lift-to-gross lift ratio as a function of

total volume. Figure 8 shows the following:

1. Early German non-rigid configurations exhibited a greater
useful lift-to-gross lift ratio than subsequent configurations
for essentially the same reasons cited for the early German
rigids.

2. The improvement within the helium-filled non-rigid air-
ships is technology related and not size related. As in
the rigid airships, the technology impact is not readily
apparent due to corresponding increases in strength
criteria. In addition, the increase in design velocity

(which converts to a factor of four in terms of dynamic
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7. RS-1 SEMI-RIGID (1925)
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0.6
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Figure 8 - Useful Lift*-to-Gross Lift Ratio versus Airship Volume
(Past Non-rigid and Semi-rigid Configurations)



pressure for doubling the design velocity) between the ZPG-3W

and the 1919B nonrigid tends to prevent improvement recognition,

3. The semi-rigid airships do not appear significantly differ-
ent in terms of the parameter plotted than the non-rigids
for a similar period in time.

4. The benefit of dynamic lift has been included in Figure 8
with respect to the ZPG-3W and the ZPW-1 design study

configuration.

Figure 9 represents a comparison between past rigids, non-rigids, and
semi-rigids. The parameter used for the comparison is empty weight-to-

maximum gas volume ratio. The following comments are offered relative

to Figure 9:
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Semi-rigids and non-rigids for a comparable period in time
(1916 to 1925) do not appear to differ significantly in terms

of efficiency*, based on comparing data points 3, 4.A, 4.B,
11, and 12. In general, the design criteria, velocity, and mate-
rials were comparable in these designs and the sizes were
similar.

The most recent rigids (data points 5.A, 5.B, and 6) have
relatively the same efficiency. All these configurations have
essentially the same design velocity and were of similar sizes.
The Akron, Macon, and Hindenburg used a more severe hull
strength criteria than the Graf Zeppelin. However, this was
offset by the Akron, Macon, and Hindenburg using improved
materials and the Hindenburg using an improved powerplant.
The ability of the non-rigid designs to perform heavy takeoffs
has been translated to an increase in efficiency; this has been
done by converting the dynamic lift into an effective increase
in gas volume using a lift value for helium of 0.993 kg/cu m
(0.062 1b/cu ft). Volume II assesses the "real gain" in
efficiency resulting from heavy takeoffs. **

An increase in efficiency in the rigid design over certain

size ranges also can be realized by heavy takeoff as discussed
in Volume II.

The rigids and non-rigids of data points 5.A, 5.B, 6, 9,

and 10 from a comparable period in time (1928 to 1936)
indicate that the rigid configuration is historically some-

what between 12 and 25 percent more efficient than

Meaningful comparisons cannot be made over large periods in time general-
ly due to changes in strength criteria based on experience and wind tunnel
testing, technological improvements, and general trend to higher-speed
designs as time passed.

* .
This is accomplished by defining the relative gain in useful lift versus the
relative increase in empty weight due to increased landing gear weight.
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the non-rigid.* Again, the reader must refer to Volume II
to compare the two configurations precisely,
6. A comparison between the ZPG-3W and the rigid airships

of the 1930 era is probably meaningless,

Figure 10 shows the effect that altitude has on useful lift. It can be seen
from Figure 10 why airships have historically been considered relatively low-
altitude vehicles. Itis reasonableto suggest on the basis of the plot that, as a
rule, commercial operations with a modern airship vehicle (MAV) should be
limited to about 1524 m (5000 ft) above sea level to maximize productivity.
Inherent in that statement is the general conclusion that commercial operations

would not be suited to routes passing over mountainous terrain.

Use of the airship in military applications requiring high-altitude capability
is not nearly such a significant concern. The "penalty" paid to attain an opera-
tional capability of 6096 m (20, 000 ft) can quickly be offset in a high-priority
military need situation when it is realized the airship may be the only viable

approach for meeting the need.

20
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16 | IS |
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=
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= Ep Mo \

| w \
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Figure 10 - Altitude versus Useful Lift

This conclusion does not suggest that rigids are categorically preferable over
non-rigids since such a determination involves many factors. In addition, as
shown in Volume II, the efficiency gain indicated in the rigids is principally
due to their larger size.
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Figure 11 shows the relationship between structural weight and volume of
past rigid airships. The data of the figure is for airships that used different
aerodynamic loading criteria, used different load factors and factors of safety,
considered military versus commercial criteria in their design, exhibited dif-
ferent maximum speeds, and used different component material strength-to -

weight ratios.

Thus, while the data have been interpreted linearly to facilitate an ap-
praisal of the data trend, the relationship between wieght and volume is not
necessarily linear for a given set of the above considerations. The parame-
tric analysis subsection of this report illustrates the actual trend that exists
between weight and volume for given sets of variables.

Figure 12 presents one figure of merit (FOM) of interest and shows pay-
load ton-miles per hour as a function of gross weight for various notable
rigid airships of the past. The British rigid data have not been plotted since
they do not fit the trends shown because of the structure’s rather excessive

weight. Payload is defined as useful load minus fuel load required to traverse
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Note: 1.0 ton = §.072 x 102 kg,
1.0 STATUTE MILE = 1.609 x 107 m,
1.0 1bm = 4.536 x 10-V kg
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the range indicated at a velocity of 50 knots in a zero headwind condition. The
curves provide a base so productivity can be compared with past rigids and
those emerging from the parametric study. The results cannot be used to °
compare data available on other forms of transportation unless similar ground
rules are adopted to define the relation between useful lift, payload, and fuel
load. Fifty knots was not necessarily the optimal speed in terms of the FOM
plotted but was a velocity at which data were available for all configurations.
There is a variety of design criteria represented; accordingly, the linearized

interpretations are not necessarily representative.

Figure 13 presents the FOM of payload ton-miles/(hours) (empty weight)
as a function of gross weight for past rigids. The definitions in Figure 12
also apply to Figure 13, with generally the same qualifications applying. The

parametric data are compared with these data in the parametric study.

The ZPG-3W non-rigid airship data point is included so that the parame-

tric results of Volume II can be compared. Any specific comparisons
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between the ZPG-3W and the remainder of the data of Figures 12 and 13 are

for the most part meaningless due to differing specifications to which the air-

ships were built.

HISTORICAL MARKETS, MISSION COSTS, AND
OPERATING PROCEDURES

General

The historical missions and markets have been broadly grouped as com-

merical and military. The following military and commercial operations are

discussed in this subsection:

1.

2.

German military missions during World War I (rigid air-
ship operation)
Seasonal pleasure flying in Germany between 1910 and

1914 (rigid airship operation)
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3. Scheduled commercial service between Friedrichshafen,
Germany, and Berlin during 1919 (rigid airship operation)

4. Scheduled seasonal service between Friedrichshafen and
South America between 1932 and 1937 (rigid airship oper-
ation)

5. Scheduled seasonal service between Friedrichshafen and
Lakehurst, N.J., between 1936 and 1937 (rigid airship
operation)

6. American military missions since 1916 (rigid and non-

rigid airship operation)

Operations and Economics

German Military Activities

At the outset of World War I, the German military had a fleet of approxi-
mately 12 Parseval and Siemens-Schuret non-rigid airships. These airships
had little practical use during the war because of their limited size and speed.
The commercial rigid airships of the Zeppelin Delag fleet were immediately

pressed into service; thus, commercial services were suspended.

Zeppelin-type rigids totaled nine at the outset of hostilities. Ultimately,
88 airships were built by the Zeppelin Company for the German war effort.
The Schutte-Lanz Company provided an additional 18 rigids. These airships
were ultimately abandoned, however, in favor of the Zeppelin type because
moisture caused the wooden structural members of the Schutte-Lanz airships

to deteriorate.

Bombing by airship started in earnest during the siege of Antwerp, Bel-
gium, with bombs improvised from artillery shells, The Zeppelins were
employed extensively on the Russian front until that front collapsed. Raids

on London started in 1915 and grew in intensity through 1916.

In some cases, fleets of as many as 16 airships were used. Table 14

summarizes pertinent characteristics of selected bombing missions. Later
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raids were carried out at altitudes in excess of 6400.8 m (21, 000 ft) and bomb
loads were in excess of 5443.2 kg (12,000 lb). The bombing raids became
reasonably effective, with many large munition factories disabled for extended
periods (Reference 14). The raids began to decrease in 1917 when the alti-

tude capability and incendiary ammunition of the airplanes improved.

After 284 raids, of which 188 were considered successful under Army
operation, the Zeppelins were transferred to naval service in the North Sea.
These airships played an important scouting role in the famous battle of Jut-
land, the only large-scale naval battle of World War 1. Reportedly, without

the Zeppelins in this battle, the German fleet would have been eliminated.

The Zeppelins were used in a wide variety of ways by the Germany Navy.
Forty Zeppelins in the latter stages of the war broke up extensive mine fields,

stopped enemy merchant ships at sea, and bombed out enemy locks and dry-
docks.

During World War I, German Army and Navy airships flew approximately
26 000 hours, or nearly 2,315 x 109
5000 flights. About 51 airships were lost (References 15 and 16):

m (1,250,000 m), during approximately

1. 17 downed by incendiary projectiles from artillery or
airplanes

2. 19 heavily damaged by artillary
7 stranded in enemy territory

4. 8 destroyed in hangars by enemy action

At the end of the war, Germany resumed commercial passenger and
freight services with the airship, a service abandoned in 1914 so that all ef-

forts could be focused on providing airships to the military.

German Commercial Activities

Between 1910 and 1937, German Zeppelins were used for four different

sustained commercial operations.
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Seasonal Pleasure - The initial service operated by the Deutsche
Luftschiffahrts-Aktien-Gesellschaft (Delag), which was a subsidiary of the

Luftschiffbau Zeppelin (L-Z) Company, operated sightseeing and intercity
trips during 1910. Available data from the 1910 service is given in Table 15,

along with data pertinent to the entire German commercial service,

Figure 14 shows the utilization rate for the entire L-Z commercial his-
tory (1910 to 1937). The airship in the L-Z service was seasonal and within
a season may have been periodic due to weather, especially from 1910 to
1914, If a modern commercial airship would not be subject to any significant

schedule alteration as a result of seasonal effects (if it were, it never would
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exist other than as a novelty), the demonstrated utilization can be modified

by factoring out seasonal and periodic interruptions of the past rigids; this

has been done in the cure labeled "projected maximum." The projected max-

imum utilization rate in hours per day is calculated as follows:

(365)(

number of actual hours flown in year
number of days actually flown per year
The value of this parameter is included in Table 15 for each airship of the

commercial L-Z service,.

The ratio of the average block velocity-to-airship maximum velocity ratio,
plotted in Figure 15, also can be obtained from Table 15. This curve accounts
for the effects of head wind, tail wind, weather avoidance maneuvers, and
holding pattern for better landing conditions. The same ratio also has been

presented for modern-day commercial passenger jets and passenger heli-

copters,
1. : : : .
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GRAF 1935 BUR
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Figure 15 - Average Block Velocity Maximum Velocity Ratio
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Similar sightseeing and intercity flights were conducted in 1911 with 1.Z -8
and LLZ-10 airships. The LZ-11, LZ-13, and LZ-17 were operated until the
outbreak of World War I, at which time the Delag ships were placed into mili-
tary service. Reference 8 reports that the total operating costs between 22
June 1910 and 31 July 1914 for the Delag operations were 4,260,000reich
marks (£1, 700, 000 at an exchange rate of RM 1. 00 = 0. 40); this reportedly
covered 47. 7 percent of the expenditure, with the balance apparently more
than covered by the German government. In return, the naval and other mili-
tary crews were trained during the commercial flights, and the airships were

required to meet certain limited military requirements.

Scheduled Commercial Service (Germany) - The commercial service was

resumed after the war with the Bodensee (LLZ-120), which flew between Fried-
richshafen and Berlin from 24 August 1919 to 1 December 1919, with an inter-
mediate stop at Munich during part of the service. The service reportedly
operated at a loss despite aload factor of 100 percent onessentially all flights. *
The service was extremely popular as evidenced by the load factor; according-
ly, L-Z planned to introduce additional ships with flights beyond the German
borders. The Bodensee was lengthened in December 1919 so that the passen-
ger load could be increased from 22 to 30; undoubtedly, this was undertaken

to resolve the reported loss situation. The Nordstern (LZ-121) was build be-
tween October and December of 1919 and had characteristics essentially iden-
tical to the lengthened Bodensee. With these two ships carrying 30 passengers
each, it was intended to open an airship line in the spring of 1920 between
Switzerland and Stockholm by way of Berlin and to Italy and Spain. The Inter-
Allied command forbade further commercial operations, and the Bodensee was

turned over to Italy and the Nordstern to France.

Scheduled Commercial Service (South America) - Commercial operations

were resumed by L-Z in 1928 with the Graf Zeppelin. Table 16 summarizes
readily available data on the Graf Zeppelin. Operations with the Graf were
suspended shortly after the loss of the Hindenburg on 6 May 1937 since helium

The Bodensee (approximately 198,240 cu m (700, 000 cu ft) was the largest
airship that the Inter-Allied Command would permit Germany to build.
This factor, coupled with the severe inflation of that time, no doubt con-
tributed to and was possibly responsible for the reported loss.
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TABLE 16 - DATA RELATIVE TO GRAF ZEPPELIN TRANSOCEANIC

FLIGHTS AND PASSENGER LOAD FACTORS

TRANSOCEANIC CROSSING HISTORY

Year So. Atlantic No. Atlantic Pacific Total
Pass. Mail
1928-9 o - _5 1 6
1930 1 o 1 . 2
1931 _ 6 . o - 6
1932 _1ls - . - 18
1933 17 o 1 L 18
1934 _24 . L 24
1935 _32 * 6 - - 38
1936 _24 o 2 . 26
1937 _ 6 . o - _6
TOTAL 128 6 9 1 144

*These 6 crossings represent regular scheduled mail crossings from
Pernambuco to Africa and return without landing in Africa. The
mail was dropped by parachute and taken aboard with a line. Three
such round trips were made, yielding 6 crossings. Naturally no
passengers were carried.

SOUTH AMERICAN SERVICE LOAD FACTORS (1932-1935)

Year Crossings Passengers Pass/Flight % Capacity
1932 18 185 10.3 51.5
1933 17 215 12.6 63.0
*212 12.5 62.5
1934 24 429 17.9 89.5
*401 16.7 83.5
1935 32 572 17.9 89.5
*568 17.7 89.0

*On a few flights during 1933, 1934, and 1935 all passenger accommo-
dations were sold out and additional passengers were accomodated

in the keel of the ship. The figures designated with * give the
number of passengers after deducting the number of passengers carried
in the keel. 1In all cases 100% capacity has been taken as 20.

Three round trips to South America were made in 1931 before estab-
lishing the service which was first scheduled in 1932.

In 1935, several mail flights were also made across the So. Atlantic,
but as these flights were purely for mail carrying and no passengers
were carried, they have not been entered here.

A crossing may be designated as a transoceanic flight, either Fried-
richenafen to Pernambuco, Seville to Pernambuco, or the reverse.



was unavailable to Germany and the Hindenburg experience had made commer-
cial airship operation without it difficult to promote. The LZ-130 (Graf Zep-
pelin II), which first flew on 14 September 1938, was intended to be a strictly
commercial ship, but was never used in that capacity because an agreement

for the United States to provide helium could not be reached.

Among its accomplishments, the Graf Zeppelin traveled around the world
in an elapsed time of 20 days, 4 hours, and 14 minutes. It covered 3.419 X 107 m
(21,249 mi) in a flying time of 300 hours and 20 minutes, an average of nearly
31.74 m/s (71 mph). The four nonstop stages of the trip were as follows:
1. August 15to 19, 1929 - Friedrichshafen to Tokyo, nonstop,
1.028 x 107 m (6386 mi)in 101 hours and 49 minutes, over
Berlin, Stettin, Danzig, Estonia, Wologda (Russia), Yakutsk,
and Siberia. A crew of 40 plus 20 passengers.
2. August 23 to August 26, 1929 - after refueling and gasing,
Tokyo to Los Angeles, nonstop, 9.651 X 106 m (5998 mi)
in 79 hours and 3 minutes. A crew of 41 plus 18 passengers.
3. August 27 to August 29, 1929 - Los Angeles to Lakehurst,
nonstop, 4.821 X lO6 m (2996 mi) in 51 hours and 57 minutes,
via El Paso, Kansas City, Chicago, Detroit, and New York.
A crew of 34 plus 16 passengers.
4. September 1 to 4, 1929 - Lakehurst to Friedrichshafen,
last nonstop stage, 8.475 X 106 m (5267 mi) in 67 hours
and 31 minutes, via Azores, Santander, and Bordeaux. A

crew of 40 plus 22 passengers.

The engine was refueled at Tokyo, Los Angeles, and Lakehurst. Only
plugs and several valves were changed on the entire trip. Passengers included
noted men and women and journalists from various countries flying one or

more or all stages. U.S. naval officers made the trip from Lakehurst.

The transoceanic crossing of the Graf Zeppelin for its entire period of
service along with the load factors attained on the South Atlantic service from

1928 through 1935 are summarized in Table 16.

The fare schedule for the 1936 season is present in Figure 16. Reference

8 reports that the 1932 service required a total expenditure of 219,500 per
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NORTH ATLANTIC SERVICE

Fronkfurt a/Main, Germany, to Lakehurst, N. J.
Lakehurst, N. J., to Frankfurt o/Main, Germany.

For the season of (936 ten round-trips of the L. Z. 129 are Duration of the westbound voyage will be about three days and
scheduled between Frankfurt a/Main and Lakehurst, N. J. for the esstbound voyage two and one-half days. See separate
beginning in May and lasting through to the middle of October. sailing schedule for tentative dates.
RATES
{Subject to Change) One W ;
Round T
LAKEHURST—FRANKFURT OR FRANKFURT—LAKEHURST . :t40;z 50151”20 "
{2 IN A ROOM BASIS)

SOLE OCCUPANCY, DOUBLE ROOM 680 1224

The rates to and from Seville, if a landing is made there, will be $40 less in ei“\er direction.
*The rate for the first voyage from Frankfurt to Lakehurst will be $100 additional.

EUROPE—SOUTH AMERICA SERVICE

This service has been in operation during the past four years to Pernambuco is three days, to Rio de Janeiro 4 days. Regular
and is in operation again this year by the GRAF ZEPPELIN, fortnightly service from April 15t to December.
with fortnightly departures in sach direction. The time Frankfurt
RATES
(Subject to Changs) Two in Rovm Room
per Berth Alone
FRANKFURT—PERNAMBUCO R.M. 1400 R.M, 2100
FRANKFURT—RIO DE JANEIRO 1500 2200
FRANKFURT—SEVILLE . 400
SEVILLE—PERNAMBUCO 1300 2000
SEVILLE—RIO DE JANEIRO o 1400 2100

Figure 16 - Fare Schedule for Graf Zeppelin
and Hindenburg (1936%)

trip (1932g), which appears reasonable on the basis of the Hindenburg's 1936 per-

trip expenses. Using the 1936 fare schedule (which does not appear significantly

different from the 1932 rates) and the load factor information from Table 16,
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the passenger revenue (in 1932%) per trip in 1932 averaged S4820* (all
passages round trip, Seville to Pernambuco and return, double occupancy).
The maximum average revenue (in 1932g) would have been $9064 (all one-
way passages, Frankfurt to Rio, single occupancy). Reference 8 reports
the mail revenue (in 19329) at $11, 330 per trip for 1932 Freight revenue
was small as was the amount of freight carried per trip. From this, then,
the minimum average revenue (in 1932%) per trip was 16, 120 and the maxi-
mum average revenue (in 1932%) was $20, 394. This would indicate that the

first year's expenses were probably not covered by mail and passenger revenue,

Scheduled Commercial Service (North Atlantic) - The Hindenburg was used

on the North Atlantic route due to the fact that its cruise speed was higher than
the Graf Zepplin. Operating costs for the North Atlantic flights of the Hinden-
burg for 1936 are determined below from the performance data of Tables 17 and
18?‘*:k The operating costs of the Hindenburg during 1936 over the North Atlantic

route are given below:

1. Total annual expense (1936J)

a. Twelve and one-half percent %287, 500
amortization of ship (g2, 300, 000)

b. Twenty percent amortization of
five engines (four on ship, one
spare) % 60, 000

c. Overhaul, alterations, new parts,
maintenance, and repairs (includ-
ing amortization of tools and
equipment) 120, 000

sk
Reich mark = $0.40 (1932).

*
The extent of a subsidy, if any, is not known.

Ak
Data contained in this analysis transmitted in personnel correspondence

of officers of Luftschiffbau Zeppelin to officers of Goodyear Zeppelin.
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TABLE 17 -

Insurance

All riskon ship (five
percent)

Crew accident

Third-party liability

Engine breakdown

Crew baggage

€130, 000
g 11,600
g 2,000
g 5,600

g 250

Crew's wages (three flight watches
and reserves)

Administrative, engineering, and
selling overhead applicable to
the airship

Total fixed charges (19369)

%149, 450

%110, 000

g 45, 000

771,950

SUMMARY OF HINDENBURG'S 1936 NORTH ATLANTIC
SERVICE (WESTWARD CROSSINGS) ™

Flight Date of

——

Flight Distance Passengers Crew Mail Freight Fuel 0Oil Lub.0il
No. Departure Time Nau.Miles Kg Kg Kg Kg
1 May 6 61:40 3880 50 55 1059 134 50,350 4,000
2 May 16 78:50 3920 40 54 135 26 54,160 3,400
3 June 19 61:20 3692 43 54 156 58 50,600 3,01s
4 June 30 52:49 3667 21 55 146 178 55,280 3,200
S July 10 613:37 3679 50 53 123 105 54,000 3,582
6 Aug. 5 75:26 4372 50 57 195 385 55,500 2,659
7 Aug. 15 71:00 4132 58 58 170 165 52,100 3,100
8 Sept. 17 62:54 3616 72 59 112 61 51,100 3,850
9 Sept. 26 63:12 3729 44 57 190 16 51,600 3,810
10 Oct. 5 55:35 3620 56 60 79 29 50,000 3,800
Total 646:03 38307 484 2265 1057
Average 64:36 3831 48.4 56 226.5 105.7

*
1.0 naut mi
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TABLE 18 - SUMMARY OF HINDENBURG'S 1936 NORTH ATLANTIC
SERVICE (EASTWARD CROSSINGS) *

transportation of payload, miscel-

laneous expenses and terminal

fees

Total

g 48,400
2 92, 096

—E:ight Date of Flight Distance Passengers Crew Mail Freight Fuel 0il Lub.0Oil
No. Departure Time Nau.Miles Kg Kg Kg Kg
1 May 11 49:13 3600 50 55 824 75 59,230 4,000
2 May 20 48:08 3560 57 54 185 | 1096 55,330 3,400
3 June 23 61:05 3504 57 54 207 106 55,800 2,800
4 July 3 45:39 3448 54 55 140 180 55,250 2,800
5 July 14 60:58 3918 57 53 156 68 46,200 3,552
6 Aug. 9 42:52 3633 54 57 140 650 50,250 3,840
7 Aug. 19 43:49 3532 57 58 140 136 50,000 3,435
8 Sept. 21 | 55:36 3628 48 59 128 55
9 Sept. 30 | 58:02 3590 39 57 236 70 51,000 3,810
10 oct. 9 52:17 3570 49 60 156 55
Total 517:39 35983 522 2312 | 2391
Average 51:45 hrs 3598 52.2 56 231.2| 239.1
“I.0naut mi = 1.85 x 107 m. 1 lbm - 4.536 % 107} kg
2. Total expense for North .tlantic flights (19363)
a. From Table 15, the total distance flown in 1936 was
308, 323 km; therefore, the fixed charge per mile
for 1936 was 3771, 950/(3. 083 X 108 meter), or
#0. 0025 per meter.
b. The total fixed charge for the North Atlantic
flights (a distance of 1.38 % lO8 m) was
(1.38 X 108 m) (80. 0025/m) = %345, 000
3. Total variable charges westbound (1936§)
a. 223,532 cubic meters of hydrogen 3 14,960
b. 367, 792 kg of diesel oil g 10,136
15, 240 kg of lubricating oil g 5,400
Food for crew and passengers % 13,200
e. Ground crew at Frankfurt, ground
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4. Total variable charges eastbound (1936g)

a. 282,463 cubic meters of hydrogen g 20,850
b. 399 cubic meters of diesel oil s 9,495
c. 14.2 cubic meters of lubricating

oil g 1,875
d. Food for passengers and crew g 10,000
e. Terminal fees paid to U.S. Navy

for use of Lakehurst facilities,

including bases of tank cars and

freight for hydrogen shipments

and alterations to equipment at

NAS g 40,810
f. Civilian ground crew costs g 1,474
g. Administrative costs including

office, traveling, insurance, pub-
licity and other miscellaneous
expenses at Lakehurst, and in

New York during 1936; also, ground
transportation of payloads

g 20,583

Total 105, 087
5. Miscellaneous expenses (19363)

a. Passenger insurance g 4,152
b. Flight pay for crew g 38,640
c. Advertising g 5,000
Expenses charged by passenger agents $ 5,000
Total g 52,792

6. Total North Atlantic expenses (19368)
a. Fixed charges $345, 000
b. Variable charges (westbound) g 92, 096
c. Variable charges (eastbound) %105, 087
Miscellaneous charges § 52, 792
Total %594, 975

The total expense {in 1936) on the North Atlantic route per one-way trip
was $29, 749. In 1936, the passenger revenue was a minimum of $18, 108 (1936g)
and a maximum of $34, 204 one way. Freight and mail revenues (principally
mail) undoubtedly covered the total expense of $29, 749 (19363), assuming that

passenger revenue did not.
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Table 19 summarizes the operating costs for the 1932 Graf Zeppelin and

1936 Hindenburg commercial service.

Reference 17 indicates that the cost

per available seat mile for the LZ-129, which apparently is based on not con-

sidering mail revenuesa, is $0.16; this is the same value obtained from the

above data when mail revenues are neglected.

TABLE 19 - ZEPPELIN COMMERCIAL PASSENGER
%
SERVICE OPERATING COSTS

1932 GRAF ZEPPELIN 1936 HINDENBURG
SOUTH AMERICAN NORTH ATLANTIC
SERVICE (1932%) SERVICE (19368)
Discounting | Accounting | Discounting | Accounting
ITEM Mail & for Mail Mail & for Mail
Freight & Freight Freight & Freight
Revenue Revenue Revenue Revenue (Est)
1. Block Speed " 63.3 63.3 64.1 64.1
(MPH)
deste
2. Stage Length 5487 5487 3715 3715
(Statute Miles)
3. Available seats 20 20 50 50
4. Total Operating 19,500 7,920 29,749 29,749
Expense for Given
Stage Length ($)
5. Cost/Average 0.18 0.07 0.16 0.10
Seat Mile
($/Statute Mile)
6. Cost/Hour ($/Hr) 225 91.37 513 312
7. Cost/Mile 3.55 1.44 8.01 4,87
(§/Statute Mile)

1.0 mph = 4.470 x 107} m/s, 1.0 statute mile = 1.609 x 10> m

**See Appendix C of Volume IV for added details on commercial service from
which South American and North Atlantic block speeds and stage lengths
have been determined.

a . . q. .
Mail revenues were subsidized, the exact extent of which has not been
established during this overview exercise.
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It is impractical to determine by analyzing raw data what the cost per ton-
mile of cargo for the Graf Zeppelin and Hindenburg would have been had they
been cargo transporters rather than passenger ships. The detailed weight
statements of the airships must be analyzed and passenger-related equipment,
accommodations, and allowances removed. In addition, the impact of provid-
ing a cargo hold capability must be accounted for. The realization that passen-
ger meals, entertainment, and stewards would not be required also must be
considered in terms of reduced crew size andlabor as wellas resulting increases

in payload. Additional costs also would be incurred in loading and unloading.

As to what the cost might have been per ton mile, an analysis by Goodyear
in 1944 and 1945 that is based directly on the Hindenburg operating expenses
indicates that a cost of 80. 16 per ton=mile (1945 dollars) would have been

reasonable for a 2.832 X 105 cum (10,000, 000 cu ft) helium ship.

Members of the International Zeppelin Transport Corporation (Reference
18) include Goodyear Zeppelin Corporation; G. M. -P. Murphy and Company;
Lehman Brothers; United Aircraft and Transport Corporation; Aluminum Com -
pany of America; Carbide and Carbon Chemicals Corporation; and National
City Company. On 24 March 1930, an agreement was signed by Dr. Hugo
Eckener, president of Luftschiffbau Zeppelin, P. W. Litchfield, president of
The Goodyear Tire & Rubber Company; J. C. Hunsaker, vice president of
Goodyear Zeppelin; and J. P. Ripley, vice president of National City Company,
to cooperatively pursue the study, development, establishment, and operation

of a North Atlantic airship transport line.

During an October 1930 conference in Friedrichshafenbetween Mr. Hunsaker
and Dr. Eckener, it was decided to halt construction of a 40-passenger 141,600
cum (5,000, 000cu ft)hydrogen-filled airship (LZ-128) and redesign a larger
airship, the LLZ-129 (Hindenburg), that could be operated with helium. During
this same conference, Dr. Eckener stated he favored diesel engines and later

announced the new ship would definitely have diesel engines.

However, the Helium Act of 1925, which stated that helium could not be
exported as a rare military asset, was expected to be relaxed but wasn't and
accordingly the Hindenburg of necessity had to use hydrogen. After the Hinden-
burg loss in 1937 due to combustion of leaking hydrogen, the German govern-

ment suspended further commercial operations until helium could be obtained.
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Thus, LZ-128 (Graf Zeppelin) and LZ-130 (Graf Zeppelin II) were idled (LZ-
130 was used by the military on a limited basis with hydrogen). Meanwhile,
L-2's plans for LZ-131 and LLZ-132 continued to develop. It appeared at first
that Congress would liberalize the Helium Act. Hitler's march into Austria in
1938, however, eliminated the possibility of the Germans receiving helium
from America. The two remaining airships in Germany, the LZ-127 Graf Zep-
pelin and the LLZ-130 Graf Zeppelin II, were taken over by the military and

scrapped in order to use the aluminum in World War II aircraft.

As noted earlier, the metalclad is of interest in the context of a modern
airship configuration. Rather in-depth economic analyses performed by the
Detroit Aviation Company (Reference 7) are available for detailed considera-

tion in Phase II; therefore, this subject is not discussed.

Manufacturing

Rigid Airships
Rigid airships were the first large aircraft. As a result, many problems
encountered later in the manufacture of heavier-than-air (HTA) vehicles were
first revealed during the German rigid airship program. Certain classes of
the Zeppelin World War I airship approached production quantities. Enough
were manufactured so that learning curve effects were identifiable. Near the
end of the war, the Zeppelin Company was building 56, 640 cu m (2, 000, 000

cu ft) rigid airships at a rate of one every six weeks,

Development times for past airships have depended upon a variety of inter-
related considerations such as the current state of the art as related to the de-
sign objectives of the project, the particular expertise and experience of the
agency designing the vehicle, and the size of the engineering and design team
applied (which was often dependent upon national priorities). In general, pro-
grams like the Akron and the Hindenburg, which were first units of a given
design, required three to four years prior to first flight. The Germans during
World War I had reduced this time from two to six months. However, their

new designs were somewhat an extension of prior proven vehicles.

Reference 8 points out that the Zeppelin World War I production experi-

ence would suggest an 80 percent learning curve as being applicable to large
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rigid airships. This value is somewhat typical of HTA manufacturing experi-
ence. Itis also similar to the 83 percent factor applied by Goodyear in their

1944 -~ 1945 cost estimate of six 2. 832 x lO5 cum (10,000, 000 cu ft) commercial
airships. This estimate reflected increased use of tooling and jigging thanin the
Zeppelin construction; accordingly, a slightlyhigher factor was applicable. Although,
less learning takes place when increased mechanization is introduced, the

average cost of a given lot size is reduced due to lower cost of the initial unit.

Table 20 gives a detailed breakdown of the actual hours and costs associ-
ated with the Akron and Macon rigid airship programs. Far greater than an
80 percent effect occurred between the Akron and Macon airships. However,
this effect should not be regarded as typical because, at the time of the con-
struction of the Akron, manufacturing expertise was not available in this coun-
try. Thus, the Akron was constructed on a less productive basis than would
have occurred if the new design of the Akron had been the only variable for an

experienced manufacturing team.

TABLE 20 - DETAILED BREAKDOWN OF ACTUAL AKRON AND MACON
PROJECT HOURS AND DOLLARS (AS OF DATE INCURRED)

AKRON | MACON AKRON | MACON AKRON | MACON AKRON | MACON AKRON |  MACON
HOURS ) LABOR § OVERHEAD § MATER1AL T0TALS

Fabrication 1,500,000 538,190(1,343,320 | 678,104| 718,547] 504,886 |1,244,097] 911,344]3,305,964 2,094,334
Design 408,000 | 119,740| 482,231 | 146,757| 235,331 35,311 19,845 17,775]  737,407{ 199,843
Regearch & Tests 138,750 48,3001 152,623 48,167 128,670 28,186 86,775 9,168 368,068 845,720
Inflation 6,940 4,855 5,213 3,039 6,361 2,265 2,672 ¥,943 13,646 14,247
Trial Flighte 9,842 17,873 9,842 15,505 13,288 8,156 28,550 29,426 51,680 53,288
Unused Stores -0- 26,290 -0- 26,290
Tools & Devices 254,190 136,262 254,190 136,262
Taxes 18,415 30,750 38,415 31,750
Equipment Depreciation 90,113 96,905 90,113 96,905
Insurance 60,060 41,668 60,060 41,668
Perf. Bond 2,687 1,225 2,687 1,225
Dack Depreclatﬂion 1,224,267 -0- 1,224,267

Total 2,163,532 |1,128,908|1,993,229 | 891,572(2,771,929 | 885,813 |1,381,339|1,003,146|6,146,497|2,780,531
Admin. Exp. 129,970 148,433] 129,970
Total Cost . 1,015,783 6,294,930(12,910,501
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Table 21 summarizes rigid airship manufacturing data.

Figure 17 shows the data of Table 21 relative to the direct construction
man-hours per pound of empty weight as a function of gas volume (total). As
noted in Table 21, all data are for the first unit of a new design. All commer-
cial and many of the military airships fall near the suggested "historical aver-
abe" value that has been included in the figure. The only noticeable departures
would include: German Zeppelin 1.Z-38; German Zeppelins LZ-62, LZ-91,
LZ-95, and 1LZ-100; and British R-100.

As to why this departure occurred, Reference 1l suggests that the LZ-38
type was the first airship sufficiently developed for war in terms of altitude,
armament, and speed. Reference 1 also reports that the 1.LZ-38 was very suc-

cessful from the summer of 1915 to the spring of 1916.

The increase in man-hours per pound that the ever-increasing military
requirements resulted in is clearly stated in Reference 1. In Reference 1,
when referring to prior Zeppelins in comparison to LZ-62, the statement is
made that "in this connection the main advantage of the former type (prior to
LZ-62), namely the employment of a large number of similar cells and the
rapid quantity production of the transverse frames or rings, was relinquished
in favor of greater airship speed." Other military demands such as quieter
exhaust systems, multimachine gun locations, more elaborate bomb releases,
improved structural techniques (requiring more hand labor) to permit higher
altitudes, and navigational improvements required to traverse greater distances

all added to the man-hours or cost per pound.

The military airships of other nations never performed these "strategic
missions"; accordingly, their construction man-hours per pound never ap-

proached the value of the elaborate German warships.

The 1944 Goodyear estimate for direct construction man~hours for the
initial unit of its proposed 1944 design of a 2.832 X 105 cum (10,000, 000
cu ft) commercial airship agreed closely with the suggest historical average.
The fabrication man-hours per pound for this airship were somewhat lower
than the historical average; however, the estimate reflected added tooling and
jigging with respect to that used in prior programs. Accordingly, a lower
initial unit estimate and an 83 percent learning curve were used as opposed

to the historical 80 percent curve.
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Table 21 compares data for the 1.Z-129 and 1.LZ-130, which were essential-
ly the same design. This table lends further credence to the 80 percent learn-

ing curve effect experienced with the World War I Zeppelin.

Thus, the historical average suggested in Figure 17 is a reasonable point
of departure for Phase Il in establishing future rigid airship acquisition costs.
Readily available information relative to existing materials, existing propul-
sion systems, and existing avionics costs will provide realistic information

for other facets of the acquisition cost estimate.

It is important to realize that, given today's technology in HTA and the
historical foundation up through the 1940's in LTA, Goodyear envisions a
modern rigid airship that would not require any state-of-the-art advances.
Certain factors such as compliance with today's certification standards and
substantial aerodynamics and structural verification testing must be considered.
Certain costs typical of many new HTA programs are avoidable because of the
off-the-shelf component philosophy, which seems realistically adaptable, and

more importantly because in no area must the state-of-the-art be advanced.
Non-rigid Airships

Two periods of manufacturing activity illustrate the approximate fabrica-
tion costs of past military non-rigid airships: (1) the World War II years
during which the K-type airships were built and (2) 1950 to 1960, during which
the more elaborate Z5SG-4, ZS2G=1, ZPG-2, and ZPG-3W were built.

Prototype airships (one each) were built of the Z5G-4, ZSG-1, and the
ZPG-2 with follow-on production orders of 14, 17, and 15, respectively. Four
ZPG-3W configurations were delivered. Table 22 summarizes pertinent cost
data relative to these configurations. Based on the fabrication dollars* and
empty weight data of Table 22, a cost per pound factor is given for both the
prototype and production quantities. A learning curve factor also is given
and was derived on the basis of the prototype cost, the average production
cost per unit, and the number of units produced. The learning factors are
higher (less learning is indicated) because material dollars are included in the
cost-per-pound information. Material dollars vary little from unit to unit.

All ZPG-3W units are considered prototype due to limited quantity manufactured.

Dollars are used for the non-rigidairships and hours are used for the rigid. Hours
are used in the rigid to avoid the uncertainty of exchange rates, short term
inflation effects, etc.
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Figure 18 shows the prototype cost-per-pound data versus empty weight
both at the incurred value as well as at the 1974 dollar level. Because four
ZPG-3W's were built compared to one each of the other configurations, the
ZPG-3W cost per pound is somewhat lower in terms of the 1974 common
dollar basis. As a result, the cross-hatch in Figure 18 - which indicates
a historical cost-per-pound range for a first-unit military prototype - ex-
cludes the ZPG-3W data point. Phase II must necessarily identify propulsion
system, avionics, and electronics requirements based on specific mission
requirements; costs for these items are additive. However, with that data
and the data in Figure 19, acquisition of a military prototype should be reli-
ably identifiable. A nonmilitary prototype would be considerably less than a

military prototype, which is perhaps better indicated in Figure 19.

Figure 19 shows production costs for non-rigid military airships
although there are differences in terms of the magnitude (and, as a result,
in the techniques utilized) of airship production in comparison with HTA pro-

duction. Figure 19 shows that:

1. There is a substantial difference between the World War II
K-type configurations and the configurations following the
war in terms of the common 1974 base due to increased
military complexity as well as a quantity effect. This
trend also is discernible in HTA military aircraft and is
identifiable from the data presented for these vehicles.
The military HTA cost-per-pound increase indicated from
1955 to 1967 is 350 percent, which converts to a real
dollar -per-pound growth of 300 percent.

2. Mid-1950 military LTA and HTA costs per pound were on
the same order as indicated in Figure 19, although the
different comparison base suggests HTA vehicles exhibited
a somewhat lower cost per pound.

3. Commercial HTA costs per pound are about one-third the
cost per pound of the military HTA in terms of real
dollars. This same trend will exist for LTA, with the

extent of the factor a task to be performed in Phase II.
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Figure 18 - Manufacturing Costs for
Non-rigid Airships (Prototype)
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Figure 19 - Manufacturing Costs for
Non-rigid Airships (Production)
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The type of data presented in Figures 18 and 19 will be of significant

assistance in establishing realistic acquisition costs in Phase II.

Table 23 summarizes engineering hour expenditures on the ZPG-1,
7ZSG-4, ZS2G-1, and ZPG-3W programs. This data is not analyzed in this

report but should be a general guideline for Phase II.

Prior Goodyear Economic Studies (19449%)

Figure 5 shows that various rigid airship projects have continued at Goodyear
Aerospace since the Akron and Macon era. In the mid-1940's, Goodyear Aero-
space conducted an extensive design and economic study relative to six large air-
ships 2.832 X 105 cum (10,000,000 cu ft) in both a cargo and passenger trans-
portation role. The following paragraphs describe the results of that study, which
reflected use of the airship fleet in basically a sea-level capacity. The cost

estimate was based on the actual cost of prior airships.

Commercial Passenger

Table 24 summarizes the total cost of the six airships. Thus the average
total cost of one airship on the basis of six produced (over a 60 month period)
is about $7.4 million (1944 dollars). In the analysis conducted at that time to
determine the required passenger fares and cost per ton mile, the airships were
conservatively assumed to cost $8 million. The following study was made to

determine the passenger revenues required to support an airship passenger service:

Investment Required

One 2.832 x 10° cu m (10, 000, 000 cu ft) airship $8,000, 000

Helium inflation 120, 000
Powerplants 75, 000
Radio 100, 000
Outbound terminal facilities 150, 000

Total $8,445, 000
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TABLE 23 - ENGINEERING HOURS BREAKDOWN
ZPG-1 25G-4 782G-1 ZPG-3W Total
Hours % Hours %o Hours % Hours %, Hours £
Design data and test
Design (D-2, D-5} 315,033 371, 322 409,664 bi6, 721
Ground support (F-7) 7,673
Development (D-4, F-5) 3,211 13, 440 27,365
Design services (D-9, F-4) 1,657 3,603 28,249
118, 244 37.71372,979 50.4 | 426,707 44.0 | 680,008 43.6 | 1,797,938 43.7
Stress and weights (D-6) 88, 896 10,5 b6, 990 9.0 104, 686 11.3 84, 424 5.4 350, 000 8.5
Acro and thermo (D-7, F-3) 16,941 2.0 4,119 0.6 21,455 2.2 39,218 2.5 Kl, 733 2.0
Static and mis teat {D-10, 3-11, F-6} 78,999 9.4 16, 542 2.2 85,223 5.7 141, 695 2.1 212,459 Tl
Flight test (D-12) 94, 609 11.2 30,443 4.1 30, 954 9.4 131,773 5.4 347,779 8.5
Final corr data (D-13) 3,340 0.4 2, 185 0.2 41,708 2.7 47,233 1.1
Detail spec and project eng (D-1. D-4i 2,531 0.3 4,642 0.6 3,455 0.4 17,969 1.2 2K,597 0.7
Mockup (D-3) 31,315 3.7 43,461 31,798 3.3 29,642 1.9 136,216 3.3
Fabrication
Design coordination (F-1) 163,520 19.4] 179,017 21.5| 162,428 16.7 1 212,916 13.7 697,881 17.0
Stress and weights {F-2 9,044 1.2 22,893 2.4 60, 023 3.8 91, 962 2.2
Publications (F-8) 45, 3143 5.4 32, 140 4.3 43,993 4.4 118,473 7.6 239, 949 5.8
Field service {F-9) 1,054 0.2 10 2,000 0.1 3,064 0.1
Total engineering 843,738 {100.0f 740,431 | 100.0{ 970,787 |100.0| 559,855 100.0 [ 4, 114,811 100. G

TABLE 24 - COST OF SIX
10, 000, 000 - CU FT
AIRSHIPS (19448)

Item Cost (§)
GAC engineering and deesign 5,561,058
GAC manufacturing 13,196,910
GAC tooling 3,528, 142
GAC inspection 1,043, 328
GAC overhead (labor only) 6,729,525

GAC overhead (building depreciation included) | 10,213,229

Trial flights (labor only) 176,000

The Goodyear Tire & Rubber Company

(including manufacture of outer cover

and gaa cells plus inatallations} 4,526,872

Administrative (1% of factory cost) 449,751
Total cost ($) 44,423,815
Average cost per unit {$)] 7,403,969
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Annual Fixed Cost

Depreciation, flight equipment

(12-1/2%), and facilities $1,055,630
Insurance on ship (5%) 422,250
Maintenance and repair 100, 000
Interest on investment (2-1/2%) 211, 130

Total $1,789,010

Annual Operating Costs

2500 mi* 3500 mi*
Salaries $ 277,800 $ 277,800
Fuel and oil 239,618 189, 600
All meals 91,728 67,392
Hangar ground crews, etc. 148, 000 98, 000
Helium purification 17,600 17, 600
Compensation 4,139 4,139
Passenger and baggage liability
insurance 53,543 18,207
Advertising, sales,
administrative 200, 000 200, 000
Total $1,042,426 $ 872,738
Recapitulation
2500 mi * 3500 mi *
Total operating costs $1, 042,426 $ 872,738
Total fixed costs 1,789,010 1,789,010
8% profit on investment 675, 600 675, 600
Total cost $3,507,036 $3,337, 348

Thus, to produce sufficient revenue to permit meeting indicated costs and
show an 8 percent profit (before taxes), the following fares can be charged on 192
one-way trips per year for a 4.023 X 106 m (2500 mi) flight and 92 one-way

trips per year for a 5.632 X 106 m (3500 mi) flight:

* 3
1.0 statute mile = 1.609 X 10” m
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Passengers per year
(one way)

75%

ShiE type occupancy 2500 mi* 3500 mi
Deluxe 84 16, 128 8, 064
Pullman 174 33,408 16, 704
Economy 216 41,472 20,736

Ship miles per year 480, 000 336, 000

Yearly utilization (hr) 6, 000 4,2000

Direct operating cost

per ship mile $2.17 $2.60

Total all-inclusive operating

cost per ship mile $7.31 $9.93

Passenger miles per year
Deluxe 40, 320, 000 28,224,000
Pullman 83,520,000 58, 464, 000
Economy 103, 680, 000 72,576, 000

Direct operating cost

per passenger mile is:

Ship type 2500 mi™ 3500 mi
Deluxe 0.0258 0.0309
Pullman 0.0125 0.0149
Economy 0.0101 0.0120

The total all-inclusive operating cost

(including profit) brings the following

one-way fares:

Per passenger
. Per passen- . mile at 75%

Ship type 2500 mi*® ger mile 3500 mi  load factor
Deluxe $217.45 $0.0879 $413.86 $0.1182
Pullman 104. 98 0.0420 199.79 0.0571
Economy 84.56 0.0338 160. 94 0.0460

The total all-inclusive operating costs appear to be in line with the

Hindenburg costs presented earlier.

Since the load factor was higher on

the Hindenburg and Graf Zeppelin than in this analysis and since the

*1.0 statute mile= 1.609 % 10° m
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for these two German airships were considerably higher, it appears that the

economics of the passenger service were viable.

Commercial Cargo

A similar analysis was made in 1944 for the use of six airships as com-

mercial cargo transporters:

Summary from Passenger Revenue Analysis

Total investment 8,455,000
Annual fixed costs g1,789,010
Annual Operating Costs
2500 mi 3500 mi
Salaries $ 180, 000 $180, 000
Fuel and oil 239,616 189, 600
Crew meals 28, 800 21,200
Hangar, ground crews, etc, 136, 400 83,900
Helium purification 17,600 17,600
Compensation 4, 139 4, 139
Cargo, crew, insurance 61,030 61, 030
Administration, sales, advertising 200, 000 200, 000
$867,585 $739, 969
Recapitulation
2500 mi 3500 mi
Total operating cost 867,584 739, 969
Total fixed costs 1,789,010 1,789,010
8% profit on investment 675, 600 675,600
Total cost $3,332, 195 $3,228,579
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Trips per year (one way) 192 96
Cargo (lb) per trip 180, 000 155, 000
Ship miles per year 480, 000 336, 000
Ton miles per year 43,200,000 26,040,000
2500 mi 3500 mi
Direct operating cost/ship mile $1.81 $2.27
Direct operating cost/ton mile 0.020 0.029
Total operating cost/ship mile 6.94 9.61
Total operating cost/ton mile 0.077 0. 124

The analysis was then expanded and refined to cover various options then
of interest. Ton-mile cost comparisons were made with other means of air
cargo transport of the day (see Figure 20). This figure shows that the airship

compared very favorably with other forms of air transport.

The types of comparisons in Figure 20 will be of interest in Phase II.

American Military Experience (1916 to 1961)

During World War I, America operated three airship bases in Britain and
one in France. It is reported. however, that no American blimps were used.
A limited number of submarines were reported off the U.S. Atlantic Coast and
bombs were dropped. The primary purpose of the U.S. -built blimps during
World War I was to train crews, with patrol a secondary role. Following
World War I, the U.S. Navy's interest turned to the rigid airship, of which

the Navy ultimately operated five*.

The operations assigned to rigid airships with the fleet did not develop the
airship's most promising roles, that of strategic scouting or information seek-
ing and airplane carrying. The Akron and Macon operated for about 1700 hours

each and the Los Angeles for 2800 hours. The operational assignments of the

*
The Shenandoah, the British R-38, the Los Angeles, the Akron, ans:l the
Macon. Reference 17A gives a comprehensive history of rigid airship
developments within the U.S. Navy.
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airships mainly were tactical, with the airships supporting surface vessels

in simulated proximity to combatant areas.

The uses of rigid airships to carry airplanes in varying numbers were set
down in a memorandum from Rear Adm. E.J. King, then Head of the Bureau

of Aeronautics, to the Secretary of the Navy on 12 February 1940:

1. Scouting
a. Search operations at long ranges
b. Contact scouting (strategic)
c. Observation
d. Reconnaissance
2. General
a. Neutral patrols
b. Locating enemy commerce raiders
c. Convoying merchant vessels
d. Locating mines and submarines
e. Bombing (by planes) under certain conditions
3. Miscellaneous

a. Radio station calibration, as radio relay,
direction finding, etc.

b. As special communication station
c. Transport of special personnel or supplies

d. As "assisted takeoff' means for overloaded
airplanes

e. Flight research laboratory

At the time of Pearl Harbor, the U.S. Navy had 10 non-rigid airships,
six of which were suited for service at sea. A Japanese submarine sank the
S.S. Medio off the coast of California on 20 December 1941 and attacked oil
derricks at Santa Barbara, Calif., on 23 February 1942. Ships ultimately
were being sunk faster than they could be replaced. Based upon the success

of World War I blimps, the Navy's blimp force was rapidly increased.
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In the Atlantic and Gulf coastal waters of the United States and in the
coastal waters of the Caribbean, eastern Central America, and Brazil, 532

vessels were sunk but none were sunk under escort of an airship.

In addition to an increase in airships from 10 at the time of Pearl Harbor
to more than 165 at the close of the war, huge increases in personnel also
occurred (from 130 in 1941 to more than 10, 000 in 1944). Airship squadrons
were stationed at Lakehurst, N.J.; Richmond, Fla.; Trinidad, B.W.I.;
Recife, Brazil; Key West, Fla.; Moffett Field, Calif.; and Port Lyantey,

French Morocco.

At the peak of operations, U.S.Navyairships patrolledabout 2. 787 X lO5 sq
m(3, 000, 000 sq mi)of the Atlantic, Pacific, and Mediterranean coasts. In all,
airships escorted 89, 000 ships while making 55, 900 flights totaling 550, 000 flight

hours.

Only one airship was lost due to eneiny action and only after its bombs
failed to release while the airship was directly over the submarine. The
blimp was hit by machine gun fire, with a resulting slow loss of helium caus-
ing the airship to float to the surface. All of the crew was rescued the next

day except one.

The wartime uses of blimps, in addition to their major use in escort and

antisubmarine patrol operations, are listed below.

1. Search operations
Friendly submarines in reported areas
Overdue or lost surface craft
Crashed planes and survivors
Survivors of torpedoed or wrecked vessels

Crew of destroyed U-boat; located by blimp after
48-hour unsuccessful search by planes and surface
craft

Convicts escaping by boat from South American
penal colony

Fisherman at sea located and draft summons de-
livered him by blimp

Escaped prisoners of war
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Several boat loads of survivors from sunken German
blockade runner that were rounded up and guarded
until arrival of surface craft.

Uncharted sunken vessels

Observation

0Oil and air leaks from new or overhauled U.S. sub-
marines

Harbor antisubmarine nets and other items

Speed and other trials of naval vessels

Maneuvers of PTs, landing craft, minesweepers, and
other types

Amphibious training operations for Army and Navy
personnel

Rocket firing and shell bursts for BuOrd
Underwater explosion tests
Effectiveness of coastal and city blackouts

Inspection of damaged surface craft to determine salvage
possibilities

Inspection of Brazilian jungles and military installations
by Brazilian officials

Inspection of hurricane damage

Army tank maneuvers

Results of Army long-range gun firing tests
Operational training of fleet units

Inspection of naval stations and activities
Photography

Merchant vessels, for identification purposes
Men-of-war, for identification purposes
Submarine operations, for instruction purposes

Classified special projects for BuOrd and other
departmental units

Airplane maneuvers

Speed and turning trials of surface craft

Surface craft maneuvers

Amphibious exercises, for training films

Flight maneuvers of new Army fighter plane
Prospective real estate acquisitions

Results of Army gunfire with new fire control equipment

Army gunnery exercises
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Hurricane damage

Landfalls, for aviators' training

Inlets and channels, for Coast Guard

Landslides, for highway authorities

Disabled destroyer, for BuShips

Fall of shot in gunnery exercises

Enemy mine adrift off coast, for identification purposes
Mine operations

Spotting mines and mine fields, and plotting locations

Direction of and assistance to surface craft in mine
sweeping activities

Destruction of surfaced mines by gunfire

Warning and diversion of surface sweepers standing into
mine danger

Warning and diversion of unescorted surface craft from
floating mine

Rescue operations

Rescue of plane-crash survivors from isolated island
beach

Rescue of plane-crash survivors from the sea
Rescue of plane-crash survivors from Brazilian jungle

Rescue from isolated beach of survivors of torpedoed
vessel

Rescue from desert of stranded rescue party plus re-
moval of body of plane-crash victim

Coverage of carrier flight training exercises and location
of and assistance to ditched aviators therefrom

Location and marking men overboard

Rescue patrol during joint Army-Navy Frontier defense
exercises

Rescue patrol in areas of dense air activities

Search for and location of sunken merchantmen survivors
known to be adrift

Assistance to vessels and persons

Location of disabled surface vessels and direction of
salvage craft to them

Location of convoy stragglers or late-comers, and their
direction to junction with convoy



Emergency diversion of surface craft from shoals

Guidance of surface craft through fog-bound harbor
entrances

Guidance of buoy-tenders to uncharted wrecks

After survey of abandoned torpedoed merchantmen,
blimp called for tow, directed crew to return aboard;
merchantmen consequently saved

Coverage of cable ship while making cable repairs

Shipping control, convoy formation and dispersal, by
carrying shipping controller and delivering oral or
written orders at sea or off port

Prevention of inevitable collision of two convoys, still
visually separated

Location of barges broken adrift and effecting their
recovery by towing vessel

Delivery of written or oral orders to men-of-war and
merchantmen at sea, during radio silence

Delivery to shore of messages received visually from
merchantmen at sea

Delivery ashore of urgent message received visually
from damaged merchantmen at sea requesting immediate
docking upon arrival

Relay of message to have ambulance awaiting upon arrival
of surface vessel in port

Landing on carrier at sea, picking up confidential matter
and delivering it ashore

Location of favorable firing area for vessels conducting
A.A. exercises

Effecting rendezvous between escort vessels and friendly
submarines

Effecting junction of surface escorts and convoys in bad
weather

Furnishing position to bewildered surface craft

Lowering of medical officer from airship to surface
vessel to treat seriously ill crewman

Delivering confidential matter on deck of carrier at sea,
for use by General Doolittle's air-raid on Tokyo

Towing disabled Army launch out of danger of going
aground in neutral territory

Delivering gasoline to Army crash boat on a rescue
mission
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Delivering 50-gallon drums of gasoline to PBY stranded
on beach

Delivery of food, water, medical supplies, etc. to sur-
vivors at sea

Emergency transportation of injured personnel to hospital
Location of crashed planes in isolated areas

Guidance of rescue parties to isolated survivors and
crash scenes

Delivery of messages, food and water to salvage party
on barren island

Scheduled delivery and pick-up of mail at isolated Coast
Guard station in Caribbean

Delivery of medical supplies to remote Coast Guard
station for treatment of badly burned personnel

Scheduled delivery of food and water to engineers working
on emergency landing strip in Brazilian jungle

Delivery of urgently needed material and transport of
personnel between stations in South America by BATS
(Blimp Air Transport Service)

Coordinated communications for removal of sick seaman
from a merchant tanker by Coast Guard plane

Delivered Army aerologist and equipment to isolated post

Coordinated salvage operations by surface craft in case
of grounded transport

Escorted vessel that reported damaged, compass to
Columbia River lightship

Sighted Army tug aground, lowered survival kit and stood
by until rescue surface craft arrived

Sighting and reporting of surface craft in distress, stand-
ing by until arrival of surface aid and homing latter

Sighting and reporting of unmanned surface craft at sea,
standing by until arrival of surface aid

Sighting of burning vessel at sea, summoning and homing
surface aid

Guided rescue party to scene of plane crash and illumi-
nated with blimp's landing light

Came upon tanker with disabled engines, summoned and
directed salvage vessel to it

Hurricane damage to islands and coastline



Coastline for sites for amphibious training
Migratory birds for Department of the Interior
Fire damage in isolated areas

Radar and RDF calibration assistance, for both ships and
shore stations

Weather observation and reporting in Caribbean (and
other) areas

Reporting of fires in isolated areas
Location and reporting of schools of fish

Tracking and marking torpedoes for recovery, for sub-
marines and shore units

Tracking and marking for recovery, torpedoes fired from
torpedo planes

Located and directed salvage operations of floating bales
of rubber from sunken German blockade runners

Sighting and reporting of floating obstacles dangerous
to shipping

Salvage of $37, 000 worth of equipment from crashed
B-25s in Brazilian jungle, by repeated airship landings

Dropping of parachute troops and parachute riggers for
live-jump training

Trailing banners for Red Cross drives
Training of HTA personnel in sonobuoy operations

Sighted floating boiler at sea - a menace to navigation -
and sank it by gunfire

Reported malfunctioning of Block Island Sound marker
light and illuminated it with blimp's spotlight for repair

party

Subsequent to World War II, the Navy used the blimp primarily in an

antisubmarine warfare and an aircraft early warning capacity. The Navy con-

cluded its airship activities in 1961. Appendix B of Volume IV summarizes

the Navy airships procured after World War II.

¥
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Airship Safety

Airships are safe for the following reasons:

1. They have a low landing speed (compared with HTA)
which is particularly true of conventional LTA.

2. Multiple engines permit an essentially normal landing in
the event of engine(s) failure(s). Neutrally buoyant air-
ships were capable of landing without power under a
variety of conditions.

3. Essentially all airships are provided with an emergency
deballast capability (fuel and water recovered from prod-
ucts of combustion) in the event that loss of lift begins to
occur. The ZPG-3W, which was capable of heavy take-
offs, could release sufficient ballast on an almost
instantaneous basis (fuel in slip tanks, etc.) to bring
the airship into a neutrally buoyant condition if the
ability to sustain heavy flight was lost.

4. Rigid airships use gas compartmentalization (individ-
ual gas cells), which results in two safety related
features:

a. Loss of lift, in all but the gravest of emergen-
cies, 1s limited to the loss associated with one

cell being deflated. A deballasting capability
is provided to retain a neutral buoyancy condi-

tion during such an occurrence.

b. The airship structure is designed to accommeo-
date the increase in the maximum static bending
moment resulting in one gas cell being deflated,
thus increasing the basic vehicle safety.

Non-rigid airships have typically used envelopes designed with large
factors of safety since the gas historically has not been compartmentalized.
Additionally, these envelopes are tested periodically to verify their continued

integrity,
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Non-rigid airships are typically designed with only a small positive pres-
sure within the envelope in order, among other considerations, to minimize
fabric stresses, thereby better ensuring structural integrity. The shape of the
forward portion of the envelope is maintained during flight by radial stiffening

members (battens) emanating from the nose of the ship (see Figure 2}.

Although never accounted for in the design process, the ability of the non-
rigid airship to momentarily deflect and relieve the load causing the deflec-

tion is an added safety feature inherent in the non-rigid design.

Another aspect of airship safety is it's ability to remain airborne without
using large quantities of fuel during severe weather that may momentarily pre-
vent landing. Weather avoidance both enroute and in terms of preflight planning
has progressed enormously since the days of the last commercial airship ser-
vice and would make airship operation much safer from the weather standpoint.
While severe thunderstorms were purposely avoided in prior airship opera-
tions, airships flew through storm fronts by flying the breaks in the passing

front. Weather as it affects airship operation is discussed subsequently.

Although never a problem with past airships due to the number flying and
location of flights, collision avoidance now requires attention where airships
are used at and around existing airports and conjested airways. Today's avi-
onics and the continual advances being realized in this area are directly appli-
cable to the design process for a modern airship vehicle (MAV). This fact
alone minimizes the potential problem of collision avoidance witha MAYV,
Another factor favoring the MAV in this respect is its size, which would lead
to early identification by nearby aircraft. In addition, the closing speed of an
airship and nearby aircraft would be minimal by comparison with that of two

commercial jetliners.

The suggestion of dedicated airspace that has been made relative to MAV
use is perhaps a pessimistic generalization. If MAV's were used at the busy
international airports in this country, the standard practices at these airports
would have to be interrupted. However, the airship's potential is best realized
when it is used at much less sophisticated facilities, thereby reducing door-to-
door times. In this respect, the dedicated airspace is somewhat academic.

In order to be most effective from a transportation standpoint, conventional

airships would fly at low altitudes (nominally below 1524 m (5000 ft) above sea

level). _87-



Fire hazards in airships from the inflation gas would be non-existent

today due to the use of helium.

Another feature available today is thrust vectoring, which can be accom-
plished by any of several means. Thrust vectoring enhances low speed control
of the airship in terms of simplifying the approach, landing, and takeoff oper-
ations and also enhances the safety with which airship operations can be under-
taken.

Realizing that many design-related safety features are available and would
be incorporated into the design of a MAYV, it is still essential to review the
safety record of past airships in order to generate some part of a data base to

support the contention that a MAV would be a safe vehicle by today's standards.

German Zeppelin Experience. - During the 1910 to 1914, the 1919, and the

1928 to 1937 commercial service, not one passenger was injured or killed ex-
cept for the 13 passengers killed in the Hindenburg crash. Twenty-two crew
members also were lost with the Hindenburg.

From 1910 to 1914, service was restricted primarily to fair weather as
the rigid airship at that time had had a very short history. During that period,
37,000 passengers were carried on 1600 trips, or a total of 5.23 X 108 m
(325, 000 statute mi), without fatal accident to passengers or crew. The 1919
service flew nearly every day within Germany (flights to Stockholm were also
made), thereby successfully encountering a variety of weather conditions as
the war had resulted in a huge expansion of severe weather experience. The
1928 to 1937 period of service included intercontinental and transoceanic flights
of both the Hindenburg and Graf Zeppelin under a variety of weather and climatic
conditions. The only injury or death occurred aboard the Hindenburg, which
would have been avoided had helium been available to the Zeppelin Company.

During World War I, not one zeppelin-type rigid airship was lost due to a
structural failure in flight (Reference 15). Included in this statistic were 115
German Army and Navy airships flying approximately 26, 000 hours, a distance
of nearly 2 X 109 m (1,250, 000 mi) during nearly 5000 flights (Reference 15).
Such statistics, for flights necessarily undertaken under risky conditions, were

a monumental testimony to the Zeppelin design and operational expertise.
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Of the 115 zeppelin-type rigid airships utilized in World War I, the follow-

ing summarizes their disposition:

Disposition Number
Dismantled after successful career 21
Surrendered to Allied governments 10
Destroyed deliberately by own crews
after Armistice 7
Shot down by enemy 36

Landed in neutral or enemy territory
Destroyed by enemy action in hangars 8
Destroyed by fire in hangar

Destroyed by handling while on ground

Destroyed while landing 12
Destroyed by fire in air 1
Destroyed due to defective gas cells 1
Destroyed due to defective ventilation 1

In summary, about 33 percent of the 115 ships were retired intact after
successful careers; 44 percent were lost due to war and war-related incidents;
21 percent of the airships were lost due to inexperience; less than 2 percent were

lost due to engineering inexperience (Reference 15,

This summary suggests that the zeppelin airship design was indeed struc-
turally reliable. A significant number of airships were lost due to operating
inexperience. These losses reportedly were due to the war effort, which re-
duced the time necessary to properly train pilots, flight crews, and ground
crews. This statement appears to be amply verified by the very successful
commercial service established by the German Zeppelin Company following
the war (1919 and 1928 to 1937). During both periods, no losses occurred due

to operational experience.

In summary, with respect to the zeppelin airship and airship operations,
there is nothing inherent in the zeppelin design that would suggest airships are

inherently unsafe or impossible to operate safely. On the contrary, the
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zeppelin ships and operations are the premier example of the safety record

attainable with well-designed airships and properly trained personnel.

British losses included the loss of their first rigid, the Mayfly, due to a
ground handling mistake (Reference 15). The R-33 and R-34 experienced good
success, but the R-38 was lost on its fourth flight., Structural weakness devel-
oped on the first three flights, after which the ship was repaired and presum-
ably strengthened. On the fourth flight, maneuvers with the rudders terminated
in structural failure. The loss was ultimately concluded to have resulted from
structural weakness brought about by the attempt to design the airship for a
25, 000-ft ceiling (Reference 15,

Neither the British 100 or 101 were successful airships, with more than
one source reporting mismanagement at various levels of these programs.
The Durand Report (Reference 3) details certain aspects of the design that in-
dicate technical problems seemingly not typical of well-disciplined programs.
The Durand Report (Reference 3) details the loss of the R-101, which used
stainless steel as the principal structural member, as being due to an attempt
to further increase lift (after the ship had been lengthened to provide added 1ift
following its first trial flights). The second attempt entailed a loosening of the
gas cell wiring in order to attain an increase in gas volume, which permitted
chafing and subsequent damage of the gas cells, with loss of the ship resulting.

The R-101 was lost on the first flight after the wires were loosened.

It would appear that portions of the British experience alone would not lend
credence to the theme that airships were safe vehicles. It further appears that
the British losses, which were readily explainable, would have been avoided
had proper expertise been available to them or perhaps had the expertise been

better utilized that was available to them.

American losses relative to the rigid airship include the Shenandoah,
which was lost in a severe thunderstorm over Ohio. During this storm,
the airship literally broke in half, thereby indicating a weakness in
the hull structure in the longitudinal directions. Substantial efforts were sub-
sequently undertaken to determine a more appropriate longitudinal strength
criteria for subsequent designs. Later airships, including the Graf Zeppelin,

Akron, Macon, the British R-100 and 101,and the Hindenburg, incorporated
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much stronger hulls as a result of the investigative efforts following the loss of
the Shenandoah. Extensive investigations were conducted following the loss of
the Akron and Macon, which indicate further increases in hull strength of the

Akron, Macon, and Hindenburg were desirable.

The Akron had a very successful 19-month career. It flew about 1700
hours prior to its loss in April 1933 in a thunderstorm over the Atlantic. The
airship flew too close to the water for conditions that existed. When a violent
down gust forced the airship toward the ocean, there was insufficient altitude
to permit maneuvering. Appropriate instrumentation was aboard the airship
to permit its altitude to be determined, but was not used. The Naval Court
of Inquiry and a Congressional Committee of Inquiry made exhaustive investi-
gations of the loss and came to the conclusion that the loss was due to faulty
judgment. The airship was found to have been well-built and equipped. After
its own investigation, the Joint Committee of Congress recommended ''con-
tinuity in experience, training and transmission of knowledge'', and stated that
the experience of Dr. Eckener and other German navigators seems to show
that airships can be developed to a point where the airship either may avoid or
survive storms. It was concluded that there is no substitute for knowledge and

experience.

The Macon was lost after a successful 22-month career. It flew about
1800 hours prior to its loss in February 1935. The Macon was lost due to a
known structural weakness in the fin support structure. Recommendations to
repair and materials, etc., necessary to effect the repair had been provided.
At the time of the failure, three of the four fin supports had been strengthened;
however, time did not permit the fourth fin support to be repaired and the air-
ship was sent out to participate in fleet exercises. It was the unstrengthened

fourth fin that failed while the airship passed through a gusty Pacific front.

In 1936, the Durand Committee, which was appointed by Executive Order
No. 6238 and contained such noted scientists as Theodor Von Karman and
Stephen Timoshenko, concluded with respect to the general question of air-

ship safety and future of the airship as an agency of transport.
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1. All development of a new form of transport and more
broadly all new developments are subject to possible
hazards. This has been true in marked degree with the
airplane, the heavier-than-air form of air transport.
These hazards and casualties are a part of the price that
must be paid for all such steps forward.

2, Study of the record of these casualties leads to the belief
that, with the lessons that have been drawn from them,
and with the general advance in our understanding of the
technical problems of airship design, construction, and
operation, the probability of a repetition of such casual-
ties under like conditions should, for future construction,
be reduced to a point which, if not vanishing entirely,
may be considered as acceptable in comparison with the

promise of useful service.

This committee also recommended that continuing investigations be made

related to a large airship design.

With regard to comparative safety statistics with airplanes of a compar-
able era, Figure 21 has been prepared exemplifying the first of the Durand
Committee findings. As is indicated in the figure, the airship operations were
as favorable as, if not better than, airplanes in terms of hours between fatal
accidents for a corresponding period in time. Airplanes have improved tre-
mendously since 1939 so that major jet airline typical safety statistics indicate

more than 1, 000, 000 hours between fatal accidents.

Given the tremendous improvement that nearly 40 years of technology has
brought in airplane safety, realizing the outstanding safety record that the only
real commercial airship operation actually had (even with the exclusive use of
hydrogen), and considering the findings of the Durand Committee, it seems
illogical to come to any conclusion other than the safety of an MAV can be

assured.
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In terms of non-rigid airship safety, the U.S. Navy's experience during
World War II during which 55, 900 operational flights were made and 550, 000
flight hours recorded with only one airship lost due to enemy action and loss
of one crewman essentially speaks for itself. The loss of one of the Navy's
four ZPG-3W blimps in 1960, during which 18 lives were lost, was ultimately

determined to have been the result of operational error.

During the entire period of Goodyear commercial (advertising) airship
operations dating back to the middle 1920's, not a single passenger injury has

occurred. During this nearly 50 years of operation, 750,000 passengers have

been carried and a distance of nearly 1,13 X 10lU m (7,000,000 mi) flown.

CRITICAL DESIGN AND OPERATIONAL CHARACTERISTICS

General

Rigid airship design had progressed to a rather advanced level in the Ger-
man Zeppelin Company by 1924. At that point, about 120 rigid airships had
been systematically designed, built, and operated over a variety of atmospheric
conditions without a single airship lost due to a storm. At that time Dr. Karl
Arnstein, who as chief engineer of Luftschiffbau Zeppelin was fully responsible
for the structure of Zeppelin airships LLZ-38 through LZ-126 (the Los Angeles),
left Germany and came to the Goodyear with 12 of his technical experts. Dr.
Arnstein continued to serve as a consultant to both the German Government and
the German Zeppelin Company on the Graf Zeppelin (LZ~127), the Hindenburg
(LZ-129), and the Graf Zeppelin II (LZ-130).

This team, along withthe invaluable help of Dr. Hugo Eckener of L.-Z, re-
garded as the most knowledgeable expert relative to airship operations in the
world, provided the Navy with the rigid airships Akron and Macon. Although
the Akron was lost due to an operational error and the Macon due to a known
structural weakness (for which hardware to remedy the weakness had been

provided and partly installed), it was determined following these losses that
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additional research was advisable. These efforts* lead to greatly enhanced
methods for determining the static and dynamic loads acting on the airship and
how these loads collectively lead to the various stresses present within the
airship. Improved designs of various structural members within the airship
naturally followed. Since these developments are not generally known, it may

be of interest to review them.

An engineering analysis of any structure requires first a breakdown of all
the loads acting on the structure. Figure 22 shows the breakdown into the
general classifications of static, aerodynamic, and other dynamic loads acting
on the airship. The static load group consists of all dead weights, useful loads,
and the lift of gas. The aerodynamic and dynamic loads either are caused by
maneuvers involving changes in pressure distribution on the hull and empen-
nage or by a gust. An airship often encounters gusts when a maneuver

is being executed; accordingly, this condition must be assumed in the design.

The top illustration in Figure 22 indicates the combined aerodynamic load-
ings in straight flight, pitched flight, and passage through a gust. Points on
Curves A, B, and C represent transverse forces resulting from pressures on
the transverse sections integrated over the airships length. Lightly shaded
areas represent negative pressures or suction, while the darker areas indicate
positive pressures. Curve A results from straight flight; B results from the
dynamic lift effect in pitched, heavy, or light flights; and C results from
gusts. The second group of illustrations shows typical transverse sections

with distributions of the aerodynamic loads at various stations. The curves

are of a qualitative nature only.

In the third illustration, Curve A shows the total normal force distribution
in pitched flight and gives the resultant of the components of all aerodynamic
loads at stations along the ship's axis. Curve B shows the shear force load
integrated from the normal forces, and C is the bending moment integrated
from the shear curve. Curve D represents the maxima aerodynamic and dyn-
amic bending moments due to maneuvers and gusts for which airship hulls

would be stressed today. The dots are test values determined by an ingenious

s
Performed after Hindenburg was built.
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A— AERODYNAMIC FORCES DUE TO
STRAIGHT FLIGHT

B— AERODYNAMIC FORCES DUE TO
PITCHED FLIGHT

C— AERODYNAMIC FORCES DUE TO GUST

D— AEROSTATIC LIFT = - SUCTION

- PRESSURE

E— DEAD WEIGHT, USEFUL LOAD, AND
INERTIA FORCES
F— POWERPLANT FORCES

AERODYNAMIC SHEAR FORCES AND BENDING MOMENTS

A— TYPICAL NORMAL FORCE DISTRIBUTION IN PITCHED FLIGHT

B— TYPICAL AERODYNAMIC SHEAR FORCES IN PITCHED FLIGHT

C— TYPICAL AERODYNAMIC BENDING MOMENTS N PITCHED FLIGHT
D— BENDING MOMENTS FOR GUST AND MANEUVERS

» WATER MODEL TEST POINTS FOR GUST AND MANEUVERS

STATIC SHEAR FORCES AND BENDING MOMENTS

SHIP IN STATIC EQUILIBRIUM FULLY INFLATED AND FULLY LOADED

A— TYPICAL SHEAR FORCES
B— TYPICAL BENDING MOMENTS
C— TYPICAL BENDING MOMENTS DUE TO GAS PRESSURE GRADIENT

SHIP WITH A DEFLATED CELL

D— TYPICAL SHEAR FORCES
E— TYPICAL BENDING MOMENTS

Figure 22 - General Distribution of Forces on Airship
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investigation, financed by a special research grant that the Bureau of Aeronau-

tics made to the Guggenheim Airship Institute. These tests are discussed sub-

sequently.

The bottom illustration of Figure 22 shows shear and bending moment re-
sulting from the analysis of the various static loads. In one condition, all gas
cells of the ship are fully inflated; this is covered by Curves A, B, and C. A
is the shear force curve, B is the bending moment curve, and C is an addi-

tional moment caused by the gas pressure gradient.

Another condition is the case of a deflated cell, indicated by Curves D and
E, where the shear force curve instead of being smooth now has a sudden dis-
continuity. The loss of gas in a cell causes this disturbance in the shear force
distribution and a slight increase in the maximum static bending moment,

which must be accounted for.

The years of regular rigid airship flight operation furnished a fair esti-
mate as to the magnitude of loads that must form a basis for design criteria.
More coordinated information came from well-executed flight tests with proper
instrumentation. For example, valuable flight load data were obtained by
NACA from the Los Angeles. This method is limited in that aerodynamic dis-
turbances cannot be controlled and a considerable number of tests under all
conditions are necessary to reasonably extrapolate for the worst design

conditions.,

For this reason, wind tunnel tests under hypothetical or arbitrarily severe
conditions (Fuhrman, Goettingen) that measured forces and moments were con-
ducted, which formed an early (prior to the Akron and Macon) basis for the

design criteria.

Gusts produce the most critical of all aerodynamic loads acting on an air-
ship. It is unfortunate that the Shenandoah had to be lost to give birth to the
basic theory for gust loads on the hull of airships. A gust theory was worked
out by engineers of the Bureau of Aeronautics and of Goodyear. Also, an
elaborate study of atmospheric gust structure was undertaken; these resulted

in a vast increase in the knowledge of this all-important point.
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At the time the Macon was designed, conditions upon which the fin loading
was based were assumed to satisfactorily cover the gust conditions. However,
during a flight over Texas, extremely turbulent air was encountered and dam-
age occurred on some structural elements of the main frame supporting the
forward part of the horizontal fins; this was the first actual flight indication
that assumed loads on the forward part of the fins resulting from a combination
of maneuvering and gust loads were not sufficiently high. All wind tunnel tests
made in various laboratories in Germany and at CIT, MIT, and NACA in this
country before the design specifications for the Akron and Macon were esta-
blished did not indicate loadings sufficiently high to support the actual flight

experience cited.

However, tests conducted subsequently on the large scale model of the
Akron at NACA (1932 and 1937) gave a definite indication that larger loads

might be concentrated in the region of the forward part of the fin.

It is also necessary to know what effective local angles of attack exist at
the fins. Some information was obtained from measurements made during
flights on various airships which indicated angles that were used when the
specification for the Akron and Macon was written (10 to 12 degrees). It was
not, however, until the first water channel test was made in 1940 that actual

effective angles of attack from bow to stern were accurately determined.

These results indicate the maxima for an assumed ratio of ship speed to
gust speed. The 10 to 12 degrees assumed as being satisfactory were con-
firmed for the forward half of the ship only. The angles at the stern were

found to be as high as 15 degrees.

Certain test data from older flights and the 1932 NACA tests, appraised
in the light of the Macon experience during the Texas flight, gave indications
of the possibility of higher loading requirements. These indications had
caused Goodyear to recommend reinforcements on the Macon, then still in
service, and furnish material for installation in this particular region to meet
a higher load based on this new information. It was very unfortunate for air-
ships that this reinforcement was not completed before the Macon was maneu-
vered through a gusty front when it returned from a mission over the Pacific.
Reinforcements had been carried out on all fin supports except that of the

upper fin, where failure occurred.
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After the loss of the Macon, considerable energy was directed along the
lines of fundamental research for reappraising all aerodynamic loading require-
ments. This work was conducted by the Guggenheim Airship Institute under a
grant by the Bureau of Aeronautics and resulted in new types of model tests
involving a whirling arm tunnel, with and without gusts, and a free-flight, self-
propelled model in a water channel. These studies eventually resulted in a
comprehensive understanding of the general aerodynamic loads acting on all
parts of the airship. During the strenuous wartime activity of a large fleet of

nonrigid airships, no fin structure failure occurred.

Figure 23 shows a schematic diagram of the Guggenheim water channel.
The model, consisting of four articulated sections, was constructed of a magne-
sium alloy casting and weighted until it just floated under the water. It was
started at the left end of channel "A'" with a certain forward speed. Entering
the cross channel, it was struck by the cross-flow representing the gust. The
structure of this gust could be arbitrarily controlled so that it closely approxi-
mated any generally accepted type gust. The forces producing the bending
moments measured by this apparatus were undeniably the closest representa-

tion of natural conditions that had been developed.

Once the loads on any structure are established, there remains the prob-
lem of determining their effect in terms of stresses and to design each member
to efficiently carry these loads. In early rigid airships, methods for calculat-
ing stresses in the hull framework were taken from other fields of engineering,
mostly civil, and applied with as much judgment as experience permitted, but

many new and novel treatments were devised as the art grew.

At the time the Akron was designed, methods for treating generally applied
forces were well established. The effect of local loads, however, still re-
quired simplifying assumptions, and these assumptions were checked by build-
ing and testing full-scale joints, segments, or sections of the actual structure.
In 1933 and 1934, before the loss of the Macon, the need of a more precise
treatment for determining the stresses in all basic parts of the airship frame-
work was expressed at Goodyear and work was started along slightly different
lines from that previously followed. Methods permitting a high degree of

accuracy in the calculation of stresses in an airship hull were developed.
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(A) A SUBMERGED FREE—FLOATING, SELF—PROPELLED MODEL IS STARTED IN STILL WATER AND TRAVELS
THROUGH A REGION OF DISTURBANCE REPRESENTING A GUST. BENDING MOMENTS EXPERIENCED 8Y THE
MODEL AND ITS ENTIRE MOTION IN SPACE ARE RECORDED.

A. — STILL WATER

B. — GUST CHANNEL
C.— SCREEN

D. — WATER PROPELLER
E. — GUIDE VANES

——m X (DISTANCE INTO GUST}

{B) TYPE OF GUST IN CHANNEL RELATIVE TO SHIP’S SIZE.

— 1 T

+—— TRANSITION ZONE FULL GUST

VELOCITY
/ x

GUST VELOCITY
ol j

X .... DISTANCE INTO GUST
L .... LENGTH OF AIRSHIP

REGION A—A

Figure 23 - Investigation of Gust Forces by Water Model Tests
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The accuracy of theoretical methods for such calculations were proved by
a novel method of stress model testing. Under the added stimulation of the
Bureau of Aeronautics, Goodyear concentrated on stress model work and de-

vised a new type of structural element.

After this girder type was developed, a complete airship model 3 ft in
diameter and 18 ft long and correctly scaled in its principal characteristics
was built. The model is shown in Figure 24 and is surrounded by a cage of
steel rings. Loads representing a great variety of conditions that an airship
experiences were applied to the model by means of tension or compression

springs between the joints and the steel rings.

Close agreement was obtained between the new theory developed and test
results from this model. This ended a long-drawn controversy between many
international scientists on the question of whether an airship hull should be

stressed following the bending or shear theory.

After this complete model was finished, the work was continued by building
a stress model of a large bay in greater detail. This model was 10 ft in diam-
eter. The effect of gas pressure loads was explored by inserting gas cells and

applying internal pressure, and the effect of change in initial tension in the

brace wires was studied.

Another fundamental problem that was answered by a bay model test was
the question of stability or buckling strength of one bay. The test proved close
agreement with a new theory which was developed for this particular problem.
Figure 25 shows the close agreement between theory and stress model measure-

ments in this case.

Extensive testing efforts were undertaken relative to structural member

and structural joint fatigue problems with better design techniques resulting.

It is certainly essential, if realistic weight estimates for a modern airship
are to be attained, that the impact of the results of these efforts be factored in-
to the parametric weight equations along with more obvious considerations of

today's material and propulsion capabilities.
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THIS FIGURE SHOWS THE GENERAL STRUCTURAL MODEL OF A COMPLETE RIGID AIRSHIP HULL. THE STEEL RINGS
FURNISH THE BASES FROM WHICH LOADS ARE APPLIED TO THE MODEL. THE MODEL WAS SUBJECTED TO NUMEROUS
STATIC AND AERODYNAMIC LOADING CONDITIONS. EXTENSIVE READINGS OF STRESSES IN GIRDERS AND WIRES

AND OF DEFORMATIONS WERE MADE.

Figure 24 - Structural Model Tests

-102=-



D = AL Font Mymiar + My Z 25 + NNt 2 Mg Seipr 4 25
ny;;a MODEL ;;;;E}'?ggé’ (“{;‘mefqrd g‘l‘/(:a“c‘{fgplwrﬁkim[ ( :I-r :E/sr)- N((A,:,C;/(/A;'ED
1 I |25mm.H0 | 207 210 -1 4 3.9
2 I o 173 175 ol 4 3.7
3 IX | 25mm. H1O 204 206 -1 4+ 3.9
4 |x o 171 170 +4 “+ 36
S O |25 mm.H20 196 /88.6 | +4 3.5 3.8
6 T (o) 15/ r48.7 |+I2 35 | 3.6
“’_ = UNITY FOR THIS AARTICULAR TYPE OF LOADING AND

THIS GENERAL TYPE OF STRUCTURE .

(A) TEST DATA OBTAINED ON MASTER BAY MODEL WITH ANALYSIS

{(B) STRUCTURAL MODEL OF AN EMPENNAGE MAIN FRAME. LOADS WERE APPLIED FROM THE
HEAVY STEEL RING

Figure 25 - Comparison of Theoretical Calculations with Test Results
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Maximum Bending Moment Criterion

Perhaps the most important and most elusive criterion to parametrically
establish is the maximum aerodynamic bending moment resulting from gust
loads. Historical criteria are extremely limited in terms of a representative
fineness ratio range while promising analytical approaches are characteristi-
cally complex and time consuming. The following paragraphs briefly describe
the historical criteria and discuss the rationale leading to the development of
the maximum aerodynamic bending moment to be used in the current para-

metric study.

Prior to the mid-1940's, the maximum aerodynamic bending moments used
in the analysis of nonrigid airship envelopes have been estimated from the ex-

pression

M = 0.018qV2/3L

This criterion is uniquely related to similarities in mass distribution and
geometry as well as to a specific gust velocity ratio, Since all nonrigids de-
signed to this criterion closely satisfied the implied similarities and flew at
approximately the same speeds, the limits of applicability were not violated.
Furthermore, considering the corresponding long records of successful flight
operation, the magnitude of the coefficient is not debated here. However, the
indiscriminant application of this historical expression to new geometries and
speeds that depart from its empirical base may well lead to erroneous con-

clusions,

In 1944, C. O. Burgess (Reference 18) evolved a criterion for the maximum
bending moment experienced by a rigid airship encountering a discrete gust

disturbance having an amplitude of 10.67 m /s (35 ft/sec):

M = 0.96 vaLO'27

This expression stemmed from interpretations of a series of related
studies conducted by the Daniel Guggenheim Airship Institute. These studies

included water channel, wind tunnel, and whirling arm tests on airship models
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and an atmospheric gust investigation. Results up to 1940 are summarized in

Reference 18 with further detail provided in References 19 to 21.

The principal water channel test article was a small (1/150 scale) free-
floating model of the Akron, which satisfied the dynamic similarity require-
ment about all three axes. The water gust channel is as described previously
and is further detailed in Reference 23. Tests were conducted with five differ-
ent types of fins at various rudder settings and movements, the latter while the
bow of the ship was entering the gust. The gust profile was characterized by a
gradient distance of one-half the ship's length (121.92 m, or 400 ft full scale)
followed by an essentially steady region at the peax transverse velocity, u
(this gradient distance of one-half the airship's length was selected as that

which would produce the critical loading).

The commendable analysis of Reference 24, which introduced a full-cycle
l-cosine gust profile, tends to support the water channel results illustrated in
Reference 24. Bending moments were measured at four stations along the air-
ship's longitudinal axis during model runs made at velocity ratios (v/uo) of
2.4, 2.6, 3.5, and 5.25,

The resulting envelope of maximum bending moment coefficients showed the
peak occurring at approximately 0.40 L from the stern and a velocity ratio of
approximately 3.5, with little change resulting from further increases in the
incremental angle of attack, u/v. The lower (u/v) data point(s), however, in-
dicated a substantially linear variation in maximum bending moment over the

velocity ratio range of principal interest.

In deriving the maximum bending criterion, Burgess:

1. Accepts the maximum bending moment coefficient given

by the water tunnel test for the Akron

(Cpy = f-n—??ﬁ,e—m = 0.095 at u/v = 1/3.5)
2. Reasonably assumes a linear variation of Cm with u/v

3. Simulates the gust profile (indicated by the gust investi-
gation) with an expression in which the gust velocity
varies as the width of the transition zone (one-half ship's

length) to the 0.27th : = = 0.27
gth) e power; u=u_ (L/LO) i
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At this point, Burgess departs from nondimensional form and introduces
a "standard" ship's length, LO, of 243,84 m (800 ft) and a related "standard"
gust velocity, us of 10.67m /s (35 ft/sec). In effect, he writes:

u = 0.198 ug (L/2)% 27

Thus, the maximum effective gust velocity is made a function of the ship's
length and is not fully developed for lengths under 243.84 m (800 ft).

Expressing the maximum bending moment coefficient as

M=CmqV

where C
myu
m \u/v\v
2

@]
1

<
1]

displacement volume

<

Then
C ) 0
—(;7;)01) (5) (v) (V)

in which

(0.095) (3.5)

s

0.27

c
1}

0.198 u_ (L/2)
u = 10.67m/s (35 ft/sec)

Making the indicated substitutions,

0.27

M= 0.96 pv VL '

As evolved, this expression was considered generally confined to hull con-

figurations dimensionally similar to the Akron and Macon.
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Having deemed the applicability of historical bending moment criteria too
limited for parametric usage and confronted with the problem of finding an

early viable solution, the following assumptions were made:

1. Differences in maximum bending moment attributable
to variances in configuration-to-configuration weight dis-
tributions will not alter the results to any significant
degree.

2. Aerodynamic bending moments resulting from penetra-
tion of a discrete gust disturbance similar to that simu-
lated in the water tank tests are reasonably indicative of
critical loadings.

3. The peak bending moment coefficient obtained in the water
tank tests is a firm anchor point about which to hinge the

parametric estimates.

With the introduction of the foregoing assumptions, estimates of the rela-
tive change in bending moment coefficient due to changes in fineness ratio, f,
from the reference point (f = 5.91) were considerably simplified. First, hull
geometries were described at a fixed volume and varying fineness ratio by
reasonably assuming similar nondimensional x-y coordinates at a constant
prismatic coefficient. The related changes in transverse aerodynamic force
distributions were then estimated using modified (viscous correction) slender
body theory including an empirical adjustment based on limited experimental
data for a fineness ratio forebody. The proportional change in the maximum
bending moment coefficient thus resulting was then applied about the reference
point to yield the variance shown in Figure 26. Several interesting but prob-

ably fortuitous aspects of Figure 26 were subsequently noted and are described

below.

As fineness ratio is varied at constant volume and prismatic coefficient

(as in the present study), it can be readily shown that

ve/3L 1 3!

(V2/3L 5 :(_fz_>2/3
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Figure 26 - Estimated Variation of Peak Bending Moment
Coefficient with Fineness Ratio,

C, = M/q V

which also closely approximates the actual rigid/non-rigid relationship as

might be expected. Using this to convert the bending moment coefficients of
. , 2/3 . e fm

Figure 26 from a volume toa V L basis indicates that a/s so refer-

ax
enced is nearly a constant and equal to 0. 0822 per radian. The latter com-

pares closely to 0.0805 for a 4.5 to 1 fineness ratio for the semi-rigid airship.

Another relevant comparison is provided by translating the historical non-

rigid criterion of Cm = 0.018 (based on V2/3 L ) to an equivalent gust velocity

using the present preliminary result:

u = 0.018 = 0.219

v 0.0822

which for the 36 m /s (70-knot) class non-rigids equates to a design gust velocity

of about 7.92 m/s (26 ft/sec) and indicates a comparative degree of optimism.
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The relative longitudinal bending strengths of prior rigid airships are
shown in Figure 27. where the recommended moment from the water channel
results have been used to nondimensionalize the ordinate. Of these ships, only
the Shenandoah was lost due to a longitudinal structural failure and this failure

occurred in what was reported to be a very severe thunderstorm.

As can be seen from the figure, the Shenandoah is by far the most inade-
quate from the standpoint of the findings of the late 1930's and early 1940's.
Realizing this and that the design represented by the parametric formulations
for the structural weight of the conventional rigid is about 25 percent stronger
in longitudinal bending than the strongest airship ever built (Akron and Macon),

it is believed that the parametric design is structurally very adequate.

Prior to actually building a rigid MAV, extensive testing and analyses
will be required to precisely define the aerodynamic loads associated with
the particular vehicle shape and aerodynamic environment of interest.
Recommendations relative to this and other technology needs as well as
suggested approaches for meeting these needs are important aspects of
Phase II.

Operational Aspects of Airships

Mooring and Ground Handling

From the early 1900's to the mid-1930's, much progress was realized
in mooring and ground handling large rigid airships. The following paragraphs

provide a very quick historical picture with respect to the evolution of mooring

and ground handling techniques and equipment during these periods of time.

From 1900 to 1909, the rigid airships of the German Zeppelin Company
were operated from Lake Constance (Bodensee). The airships were docked
in floating hangars while they rested on floats themselves.* The airships
were removed from the hanger while still on the floats under the motive
power of small tug boats. The early airships ascended from and landed on
the floats. After landing, the airship was replaced in the hangar again under

the motive force of the tugs. Water landings and ascension were discontinued

*
£

Early German Zeppelimsalso were constructed in floating sheds.
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Figure 27 - Comparative Aerodynamic Bending Strength of
Different Airships

on a regular basis in 1909; however, they have been accomplished periodically
throughout the history of airship operations. This also includes some rather

extensive and successful efforts with non-rigids.

From the end of water operations until early 1911, the airships were
docked and undocked ty manpower alone. In May 1911, however, one of the
Delag commercial service ships (LLZ-8) was carried away by a strong wind
(cross hangar) from a ground crew of approximately 300 during an undocking
maneuver. Following this incident, which was a severe blow to the newly
founded service, Dr. Eckener developed a successful system of docking rails
and trolleys. In general, the rail system (similar to a train) extended the

length of the hangar and several hundred feet beyond so that the airship was
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well clear of the hangar when it ascended. After the airship cleared the
hangar, the lines securing the airship to the trolley were loosened and manned
by the ground crew; the airship then ascended. A similar procedure was

followed when docking,

Very large ground crews were used by the Germans to handle the large
zeppelin warships(600 to 700 men were not uncommon during severe weather).
The zeppelin warships were never moored during the war (i. e, they were always
placed in the hangar after a flight); one reason for this was a noticeable sav-
ings in weight when the mooring equipment was eliminated, as well as a general
reduction in hull strength. Designing the hull to withstand mooring loads would
have induced added weight, which would not have been conducive to attaining

sufficient bombing altitude to avoid improving defenses.

Great Britain contributed significantly to developing a suitable technique
for mooring large rigid airships during nonflight periods so the hangaring
(docking) requirement after each flight could be avoided. The British developed
and successfully used the high-mast mooring system. Later in 1919 when the
British perfected the technique of actually flying to the mooring mast, they
were able to moor their ships with a ground crew of approximately six men.
Takeoffs from the high-mast were performed with even fewer ground crew

members.

The U.S. Navy later used the high-mast mooring technique on its early
rigid airships but later developed a preferrable low-mast technique. The
principal disadvantages of the high mast were excessive cost, permanent in-
stallation, and a substantial portion of the crew had to remain aboard at all

times since the airship had to be essentially flown while on the high mast.

In 1927, the Los Angeles was the first rigid to use a low mast for mooring.
In addition to being much less expensive, the low mast permitted the airship to
be unattended while moored when the airship was ballasted heavy. Initial low
masts used by the Los Angeles were fixed, and a taxi wheel carriage was se-
cured to the aft car; thus, the airship was able to weathervane, with ballasting
preventing the airship from kiting in the wind. Less than a year later, a "ride-

1}

out" car was introduced that consisted basically of a railroad flatcar (free

to move on a circular railroad track with a radius of about 134.11 m (440 ft)
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to which the aft car was secured. The rideout car incorporated rail clamps as
well as ballasting provisions; thus, the airship was positively secured. Yaw
cars were used on each side of the rideout car and on the same track as the
rideout car. Lines from the airship to the yaw cars controlled the lateral
motion of the airship during mooring. The airship nose was controlled by the
main mooring line. All line lengths during mooring were controlled from
winches at the mast, with the airship ultimately pulled to the mast under the
action of these lines. Once at the mast and with the nose of the airship secured

into the mast cup, the aft power car was secured to the rideout car.

The Navy made further improvements by developing a mobile low mast in
1929, which as a result of its telescoping nature could accommodate the Los
Angeles as well as the larger Akron and Macon soon to be available. The Los
Angeles made both flying moors and takeoffs from the mobile mast. In addi-
tion, the Los Angeles also was docked in the Lakehurst hangar by a mobile mast
towed by a tractor-type vehicle. This operation required about 60 men, where-
as 400 to 500 men were required in moderate winds on each side of the airship

just a few years earlier.

Further advances in ground handling equipment were associated with the
Akron and Macon projects. Mobile railroad masts were used, the rideout and
yaw cars (as in the Los Angeles) were used on a necessarily larger circle, and
a stern beam was added (which operated on the same railroad track as the
mobile mast) to control the tails during docking and undocking. In general, the
handling of these large ships was quite mechanized with the dangers to the air-
ship and ground crew that had existed a few years earlier greatly minimized

if not essentially eliminated.

Very significant improvements were realized by the Navy in handling air-
ships subsequent to the mid-1930's., These improvements related to the non-
rigid airship. However, the equipment and experience gained by the Navy that
culminated in its handling and mooring techniques for the ZPG-3W airships,
which were over 134.11 m (400 ft) in length, are very applicable to much larger
rigids. The most significant Navy development in this respect were ground hand-
ling mules and mobile masts. The gound handling mules were highly maneuver-

able tractors with a constant-tension winch capable of accepting handling line
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loads from any direction. Landing and mooring of the ZPG-3W required about
18 to 20 in the ground crew, whereas the early German rigids of a similar size
often used crews in excess of 400. Docking and undocking were performed with

11 to 12 men; takeoff required approximately the same number.

What mooring and ground handling techniques might be used in conjunction
with an MAYV are discussed in the last subsection of this overview. References
25 and 26 give comprehensive details relative to ground handling and mooring

of rigid airships and Reference 27 relative to non-rigid airships.

Weather

General - No vehicle is truly an all-weather vehicle in that it can effective-
ly perform its assigned mission in any weather condition except possibly a sub-
marine, which can operate below weather effects. However, many vehicles
can survive severe weather conditions and resume operations after the weather
has passed. In terms of the severity of weather in which the airship can
actually operate, the mid-1950 demonstrations by the Navy and their conclu-

sions are certainly of interest.

In 1954, the Office of Naval Research assigned to the Naval Air Develop-
ment Unit at South Weymouth, Mass., a project to demonstrate the all-weather
capability of the airship. Technical guidance and instrumentation were fur-
nished by the National Advisory Committee for Aeronautics. During the first
two years, nine flights were made in weather conducive to icing, snow, and

other winter weather conditions.

On the last two flights, ice accumulation was recorded, One flight ascended
and descended through a freezing rain and accumulated an estimated 1361 kg
(3000 1b) of clear ice. At no time was the control or flight characteristics of
the airship changed, other than the static heaviness, and the crew became
psychologically adapted to flying in icing conditions. The airship was a Model
ZPG-2, with an envelope volume of 27,612 cu m (975, 000 cu ft), a length of
104.55m (343 ft), and a maximum diameter of 22.68 m (75.4 ft).
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As a result of this project, several minor modifications were made in the
airship used for the experiment, such as adding heading tapes to various valves
and drains, heat for the pitot head, protective coating for the upper surfaces of
the lower fins (an X arrangement), flush antennas, electrically heated pro-

pellers, and ruddevator horn pulley covers.

The third year's operations consisted of three phases, as follows:

Phase I - a weekly flight of approximately 30 hours when the
worst weather was predicted

Phase II - a joint operation with a squadron from Lakehurst,
N.J., to man a specific station for 10 days during
January when the worst winter weather might be
expected

Phase III - a long simulated barrier flight from South Wey-
mouth over the North Atlantic to another base

along the eastern seaboard

During Phase I, seven flights were made, during which icing conditions

were encounted on two occasions.

Phase Il was scheduled from January 14 to 25, and the worst East Coast
weather in many years was experienced; icing, fog, sleet, snow, r‘ain, and
gale winds were encountered. The station was manned continuously for 240
hours using five airships. Eleven flights were made. The "icing" ship ac-
counted for five of the flights and on one flight spent 30 hours in icing condi-
tions. Even though field conditions at South Weymouth were rigorous, the
operations were conducted off a mobile mast; the airship was hangared only

once for a regular maintenance check.

Phase III began on schedule on March 15. After successfully completing
the assigned mission of a 60-hour patrol across the North Atlantic, the airship
continued to circumnavigate the Atlantic without refueling. It landed at Key

West, Fla., after 11 days in the air and covered almost 1.34 x 107 m (8300 mi).
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The conclusions of the official report on Phase II were:

"Airship ground handling evolutions can be accomplished in
virtually all weather conditions.

"Routine ground maintenance can be accomplished under ex-
tremely adverse weather conditions.

""Rime ice accretion at normal airship operating altitudes is
not considered a deterrent to proper stationkeeping for pro-
tracted periods of time.

'"Maintaining a continuous barrier station over the Atlantic

Ocean appears to be feasible under all weather conditions."

Wind - Wind is the most important weather element in airship operations.
However, while high winds in themselves are no threat to the structural safety
of an airship in flight, historically its limited speed necessitated that high head
winds be avoided by flying the pressure patterns. This technique has been
demonstrated in countless instances dating back to the World War I German

operations.

Gound operations can be delayed, particularly where the winds are turbu-
lent. The airship's ability to remain aloft with minimal fuel consumption and
thereby delay a landing until the unfavorable period passes was a demonstrated
operational technique. Where the fuel supply was low, the Navy relied on in-
flight pickup of fuel in containers while the airship was hovering or flying at

low ground speed.

Airships can be masted out in winds up to 46.25 m/s, or 90 knots, (Reference
28) and can be docked and undocked in down hangar winds up to 21.03 m/s
(41 knots). As the wind direction approaches 90 deg to the axis of the hangar,

the maximum velocity for docking operations approaches 10.28 m/s (20 knots).

Thunderstorms are typically avoided; however, experienced pilots have
shown during hundreds of flights in thunderstorms that properly designed
airships can safely fly in this environment. Modern weather forecasting,
communications, and constant weather updates along with onboard radar would
ensure an airship's being able to avoid a thunderstorm. Goodyear advertising

airships use onboard radar for such purposes.
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Snow - Perhaps the most troublesome situation for a moored airship is

when a heavy, wet snow of several inches accumulates on the hull and fin top-

sides. In several instances, the Navy has flushed the snow off with a fire hose.

Some promising experiments have been conducted in which the envelope helium
was heated to melt the topside snow, but the Navy did not think it necessary to
make this operational. Wet snow usually occurs near the ground and can be

avoided in flight by a moderate increase in altitude.

Lightning - Lightning has never caused concern with a helium-inflated
airship. Although all aircraft attempt to avoid lightning areas because of the
turbulence that usually exists, there has been evidence of strikes on airship
cars, fins, and topside radomes but none that caused detectable damage to an
envelope of a non-rigid. There have been reports of small holes in the outer
coverings of rigid airships where charges hit the metal structure beneath, but

the structure was not damaged.

World War II Record - The most convincing demonstration of the all-

weather capability of airships took place during U.S. Navy operations in World
War II when airships patrolled nearly 7. 77 X 1012 sq m (3,000, 000 sq mi) over
the Atlantic, Pacific, and Mediterranean. Only two bases outside the United
States had hangar facilities. A significant factor in this performance was the
high availability factor. Of the airships assigned to fleet units, 87 percent
were on the line at all times; that is, they were in operation or in readiness

for operation, which was a high factor for military aircraft during the war.

STATE OF THE ART

Rigid Airships (Materials)

General
Table 25 presents the state of the art of past rigids with respect to

materials and material strengths as characterized by the airship Macon. The

table also includes suggested replacement materials and their properties for
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TABLE 25 - MATERIALS AND MATERIAL STRENGTHS (RIGIDS)
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attaining a modernized conventional airship.

The analysis in this subsection is very much a first-order approximation
and is for illustrative purposes only. A modern airship would not be designed
on strictly a materials substitution basis. The bending moment and fin loading
criteria have changed since the last rigid was built and probably would change
again based on added research and analysis that unquestionably would be per-
formed prior to constructing another rigid airship. Goodyear developed im-
proved girder designs after the Macon that, if no additional development in this
area took place prior to developing another rigid, would be used in a modern
airship. Even in view of these qualifications,however, the materials substitu-
tion approach is a reasonable approach for understanding the impact of today's

technology.

Associated with any approach of this nature must be a decision as to what
development risks and costs are reasonable. The parametric analysis (Volume
IT) shows that the "far reaches of today's technology" do not have to be explored
to arrive at a conventional rigid configuration far superior to the last rigids.
In fact, substantially more conservatism has been adopted in the parametrics
than in the following analysis. The general philosophy used in Volume II was
"what would be used if one were to start fabrication tomorrow". Thus, the

criticism that sometimes surrounds a parametric analysis hopefully will be
avoided.

The following paragraphs relative to a modern Macon should prove

informative.

Hull Structure

For the main structural members of the rigid airship, composites are an
interesting and promising replacement for conventional aluminum. * Similar
NASA studies for an HTA vehicle have indicated structural weight savings in
excess of 25 percent. Costs at first might seem a problem; however, such

materials, when they are actually applied in an airship would be apt to be

*Called duraluminum
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more competitive than today. Naturally, the difference in composite cost

per pound versus aluminum tends to be minimized since less pounds of the
composite are required and since fabrication costs potentially can be reduced.
At this time, however, the application of these materials either on a wide

scale or as reinforcement members has not been adequately analyzed.

Stainless steel has been considered in the airship girder application; in
fact, girder tests have been performed by Goodyear using stainless steel.a:<
However, the structural elements resulting are thin by comparison to aluminum
and lead to buckling problems. Other metals could be considered but offer only

modest weight savings at added cost.

The most practical approach at this juncture is to apply a modern fatigue-
resistant aluminum alloy such as 7075-T6. 7075-T6 is commonly used with
aircraft structures and has a yield approaching twice that used on the Macon.
However, the Aluminum Company of America has indicated that its X-7050 T76
alloy is a better fatigue-resistant material and possesses a slightly improved
compressive yield strength. Appendix C of Volume IV provides a copy of a
letter (along with additional detail on this alloy) from the Aerospace Industries
Association of America, Inc. (AIA) in which AIA states that NAVAIR proposes
to substitute the 7050 alloy for all new weapon system airframe components
and spare parts currently manufactured from 7075, 7079, 7178, and 2014
alloys. NAVAIR states that substitution is expected to result in improved

reliability and lower life cycle costs.

On the basis of this material substitution, the weight of a compression
member will be (42, 000/75, 000), 1/‘?'or 0. 75 percent of the Macon weight; this
results in a savings of 3616.10 kg (7972 1b) in the main frame, 507. 78 kg
(1119 1b) in the intermediate frames, and 2212.66 kg (4878 lb) in the longitudinals.

The steel bracing wires used in the Macon could be reduced in weight
by approximately 10 to 12 percent using wire per QQ-W-470b. However,

a substantially improved weight savings would result from the use of

E3 .
The British actually used stainless steel girders in the R-101. While this
airship generally was regarded as overweight, their is no specific reference
to the stainless steel contributing to excessive weight.
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Kevlar. * Kevlar is being applied in an ever-increasing number of industrial
and aerospace applications, with Kevlar 49 having been applied widely in the
cable and rope area. Antenna and tower guy wires of Kevlar (protected from
ultraviolet by plastic shielding) also are being successfully used. Protection
of Kevlar airship bracing would not be required since it is internal to the hull
covering. End fittings and splices were somewhat of a problem with early
applications of Kevlar in the rope and cable area due to high modulus, which
did not permit the various yarns in the cross section to assume equal loading.
Proper construction of the rope or cable and proper end fittings, however, has
eliminated these earlier problems. The strengths required for the bracing
"wires" range from approximately 108.86 kg (240 1b) minimum to 5216.40 kg
(11,500 1b) maximum. This corresponds to approximately four plies of 1500
denier and 166 plies of 1500 denier, respectively. Thus, there are no minimum
gage constraints, and efficient constructions are viable in both cases. GAC
has extensively used Kevlar in a number of aerospace applications in recent
years, and its parent company (GT&R) is currently using it as a belt material

for tires.

The tenacity of the steel used in the wire bracing of the Macon averaged
approximately 2.54 grams per denier. Kevlar, with a near optimum twist, is
2]l grams per denier. Assuming a more conservative value of 19 grams per
denier, Kevlar will result in an 85 percent weight reduction. Thus, on the

basis of this substitution, the resulting weight savings is 3441,92 kg (7588 1b).

There are areas requiring some effort prior to applying Kevlar for defining
cyclic and static fatigue characteristics. Some work has been performed in

this area, and other efforts are underway. Specific recommendations will be

made in Phase II,

The outer cover wires constitute 714.42 kg (1575 Ib) of the miscellaneous
hull reinforcement. Kevlar will result in a weight savings of 607.37 kg (1339 lb).

It is conservatively assumed that a 10 percent savings in the rest of the

x
Basic difference between Kevlar 29 and 49 is one of modulus. Kevlar 29 and

Kevlar 49 are two high-strength, high-modulus, low-density organic fibers
introduced in recent years by DuPont.
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miscellaneous reinforcement structure could be realized, or a savings of

445.89 kg (983 1b).

The total hull structure weight savings is then 10,831 kg (23, 879 lb).

Empennage (Structure)

As in the hull structure, 7050-T76 aluminum alloy will permit a 25 per-

cent savings in the weight of the original Macon empennage structure. Thus,

a weight savings of 1600, 75 kg (3529 1b) would be realized.

Gas Cells

Appendix C of Volume IV summarizes the Macon gas cell data, Two dif-
ferent fabrics actually were used. However, to simplify the calculations, it
is assumed that the material to be used in the modern Macon must have a
strength equal to or greater than the strongest Macon fabric, which was about
892.91 kg/m (50 1b/in, ) tensile strength (warp and fill). Lightweight, scrim
reinforced films used in recent years in many aerostatic balloon applications
appear well suited for this requirement. Such a film would have a weight per
unit area of about 6. 78 X 107¢ kg/sq m (2.0 oz /sq yd) for a strength of 892.91
kg/m (50 1b/in. ). ’

Goodyear Aerospace's use of a scrim reinforced film in a hot air balloon
application in recent years attested to the ability to develop adequate seam
strengths at elevated temperatures that would encompass the range of strengths
and temperatures of interest in the gas cell requirement. Other companies
and government agencies have used scrim reinforced films in a wide variety of
applications over many years. With scrim reinforcement, the film tear strength
is greatly increased and damage due to handling during manufacturing and in-

stallation is definitely minimized.

Although not expected to be a problem, one area that would require added
evaluation is the cyclic environment that the gas cell would experience once

in use within the airship. This would be a rather straightforward program and
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could be performed in a laboratory environment using a scaled gas cell and hull
structure section. The laboratory pressure and temperature environment
would be controlled through a predetermined cyclic exposure representative of
actual flight conditions. The laboratory environment would be cycled, in a

few weeks maximum, the same number (or greater number if desired) of
cycles that the cell would see during its total life in an airship. Permeability
and tensile strength tests would be performed before and after to verify lack of
degradation. Various film materials could be evaluated and screened in this

manner.

The total gas cell area for the Macon was 4.50 x 104 sq m (53, 848 sq yd)
(see Appendix C of Volume IV). For the 6.78 x 10-2 kg/sq m (2.0 oz/sq yd)
reinforced film, this results in a total gas cell weight of 3053.18 kg (6731 1b),
or a savings for the Macon of 6821.24 kg (15, 038 1b).

Outer Cover (Doped) Including Empennage

The outer cover of the Macon was cotton cloth (approximately 1160. 79 kg /m
(65 1b/in. ) predoped prior to installation, with the final coats of dope applied
after installation. The weight of the finished fabric was about 0.456 kg/sq m

(6.1 oz /sq yd).

The use of a film laminate for the outer cover of the modernized Macon
appears to be a very practical consideration. While Kevlar seems to be a
logical choice, minimum gage* is a problem even with the 200 denier yarn. **%
Therefore, for the current discussion the use of dacron will be considered. A
dacron cloth with sufficient strength would be about 0.120 kg/sq m (1.6 oz /sq yd).
A Tedlar*** film would be used to protect the dacron from ultraviolet radiation
and conservatively would have a weight-to-area ratio of 0.075 kg/sq m (1.0 oz/

sq yd). In addition, the film would prevent moisture from penetrating into

"For larger higher-speed conventional airships, minimum gage may not be a
problem and its use in such a case should be reconsidered.

e
3K

"200 denier is currently the smallest denier Kevlar yard available. DuPont has
stated that, at this time, it does not intend to manufacture smaller deniers.

e ok

Trademark of J. T. Scheldahl Company.
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the interstices of the dacron cloth. While adhesive layers as small as 0.037 kg/
sq m (0.5 oz /sq yd) are possible, 0.0561 kg/sq m (0. 75 oz/sq yd) is more
practical as an average production consideration. Thus, the total film lami-
nate weight-to-area ratio would be about 0.250 kg/sq m (3.35 oz/sq yd) com-
pared with the 0,456 kg/sq m (6.1 oz /sq yd) for the Macon outer cover; this
represents a weight savings of 2579.17 kg (5683 1b).

Film laminates have found widespread application in balloon applications
and easily can be adapted. Once the grommets are installed, the film lami-
nates would be laced to the hull structure just as the predoped cotton outer
covering actually used on the Macon. Handling during manufacturing and in-
stallation should not be a problem. As with any new material, a film laminate
would require an individual or component qualification program prior to its

acceptance into a modern airship design.

Gas Valves, Hood, Ventilation; Fuel and Oil System;
Ballast and Water System; Controls; Mooring and
Grounding Handling; Miscellaneous

It is conservatively assumed that each of these weight groups can be re-

duced by 10 percent of the original Macon weight.

Netting
If the original netting is replaced with Kevlar, a total netting weight of
61.69 kg (136 1lb) will result.
Control Car and Crew Quarters

The revised weight for these weight groups based on the X-7050 T76 alloy
is (42,000/75,000)1/2 (1718 + 6450), or 2772.40 kg (6112 1b).

«123=-



Electrical System; Heating and Ventilating;
Instruments; Radio and Communication

The weight of these groups has been increased to the approximate weight

of these systems in the Boeing 747.

Powerplant

Modern turboprop engines with gear box result in approximately 0.4 pound
per horsepower uninstalled. Installed weight per horsepower generally is con-
sidered to require one pound per horsepower. Thus, for the original Macon

power rating of 4480 horsepower, the powerplant weight was 2032.13 kg (4480 1b).

Water Recovery

Although water recovery cannot be effectively used with the turboprop,
the weight of this category has been retained under the assumption that an al-
ternative technique can be provided today at approximately the same weight.

Appendix H of Volume IV discusses the possibilities of alternative techniques.

Summary

In summary, the empty weight-to-gross weight ratio has been reduced
from 0.59 to 0.34 by using materials and propulsion characteristics of today's

technology.

Material Life Characteristics

In general, the fabric materials used in the Macon would have remained in
a serviceable conditionfrom five to seven years. The duraluminum was ex-

pected to have a life of at least from 10 to 15 years.
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By way of comparison, an envelope™ of one of the Goodyear advertising
airships has been in service for more than seven years. Currently, it appears

that 10 years is a reasonable life time.

Twenty-year service lives for film and film laminates are considered
reasonable specifications today and are undoubtedly attainable. Life character-
istics of materials common to HTA craft and their maintenance requirements

are not given since they are well known.

In terms of the Goodyear advertising airships, the only maintenance per-
haps not somewhat typical of HTA vehicles is when the top of the envelope is
recoated to ensure continued ultraviolet protection. This requirement would
probably continue for non-rigids using coated fabrics. It would not be a re-

quirement for film laminates such as those suggested for a modern rigid.

Non-rigid Airships (Materials)

In general, many of these rigid airship considerations are applicable to
the non-rigid and thus are not restated. The gains in most cases, however,
would not be as dramatic since the last non-rigids were designed in the mid-
1950's. The use of Kevlar in the envelope is one area of significant benefit

requiring specific comment.

The use of Kevlar in the envelope for non-rigids of the ZPG-3W size and
larger offers substantial increase in useful lift at a given gross weight. Kevlar
has a strength-to-weight ratio about twice that of dacron. Prior estimates
have indicated that the useful lift of the ZPG-3W, which used a neoprene coated
dacron cloth envelope, could be increased 25 percent by a neoprene coated
Kevlar cloth. Further substantial improvement is attainable via film laminates.
In the non-rigid, the film renders the envelope impermeable and protects the
load-carrying member from weathering. Whether film laminates can be in-
corporated into an LTA application where a man rating is required requires
considerable additional testing and evaluation. Accordingly, the subject is not

dealt with further in this phase. The parametric analysis (Volume II),

sk

Neoprene coated dacron.
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however, illustrates the benefit derived from neoprene coated Kevlar. While
some unknowns remain, for instance, in the area of static and flexural fatigue,
through proper choice of the many variables at the designer's disposal coated
Kevlar is a very promising consideration for non-rigid envelopes. Studies
are underway by a variety of agencies and companies; the results or interim
results would permit a comprehensive plan to be developed in Phase II that
would scope the magnitude of a program leading to the demonstration of a

Kevlar envelope.

A recent innovation, known as Doweave, may be of interest in terms of
detailed consideration during Phase II. This material is a three-thread set
weave in a single ply, and its use would eliminate the conventional '"bias' ply
used in past non-rigids. Both cloth and coating weight would be reduced for
the same capability. Envelope fabrication costs also would be reduced. Fur-
ther analysis would possibly reveal whether the reduced fabrication costs would
offset increased cloth cost that would undoubtedly occur compared with a

standard weave.

Rigids (Economically)

Past conventional rigids were constructed in a labor intensive manner.
Hulls were assembled in a single large dock in a continuous fashion frame by
frame. Frames were individually constructed in an adjacent area and moved
to the hull assembly area when needed. The wire bracing was terminated by
hand wrapping and soldering. The time required to terminate one wire brace
was about 40 minutes, and there were several thousand such terminations in a
large airship. Today, this operation would be performed by a bench - mounted
mechanism in about 75 percent of the terminations and by a hand-held mecha-
nism in 25 percent of the terminations. Such an approach would reduce
the 40-minute time period to something nearer three minutes., Use of
Kevlar, instead of steel wire, as a bracing material could foreseeably further

reduce the time to effect bracing terminations.

The hull itself would be errected in an entirely different manner than pre-

viously. Firstly, today's tooling techniques would permit the components
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comprising the longitudinals, main frames, and intermediate frames to be
final cut prior to assembly as opposed to a cut-to-fit at assembly technique that
was used to a certain extent previously. Additionally, the time required in
joining the longitudinals to the main and intermediate frames would be greatly
reduced. Short sections of the longitudinals would be joined to the main and
intermediate frames at the time the individual frames are assembled. The
longitudinals would then be attached during the errection of hull sections to the
extensions emanating from the frame proper. Thus, the interface would be a
straightforward simple contour connection as opposed to prior techniques
where, at erection of the entire hull assembly, the longitudinals were attached
directly into the frame which required the fitting of complex cuts on the inter-

facing members.

The time-consuming attachment of the outer cover would also be minimized
both by improved technique and the use of a covering not requiring doping after

installation.

Perhaps most significant in reducing manufacturing costs would be the
revision in hull errection. The hulls of rigids of conventional construction
would be built up in sections with scaffolding used to facilitate access to the
hull section as construction proceeded vertically upward. At the longitudinal
center of the hull section would be the main frame with intermediate frames
(one-half the number per cell) on either side of the main frame. The hull
sections would then be joined at erection by overhead equipment that would
attach, by means of cables to the main frame, to each hull section and rotate
and translate the sections to the desired location. The hull sections could be
moved more easily than individual frames were moved previously because of

their greater rigidity.
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While assessing the impact of such modifications on acquisition cost is far
beyond the scope of this phase of the study, it is believed the results in Figure
28 are of some interest. Figure 28 presents a very preliminary estimate,
using the historical data presented previously for today's acquisition cost of
rigid airships of conventional construction over a range of weights of interest

to this study. Salient features of the estimate are:

1. The historical average of 13,23 direct construction man-hours
per kilogram (6.00 direct construction man-hours per pound)
of empty weight has been used (thus, prior construction tech-
niques are implicit)

2. A lot size of 400 units has been assumed, and conservatively
an 85 percent learning curve has been applied

3. 1974 material costs have been used as well as 1974 cost for

propulsion and avionics
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Figure 28 - Preliminary Estimate of Price versus Empty
Weight for Conventional Rigid Airships
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4, Hourly rates (labor and overhead) correspond to 1974,

those of major domestic airframe manufacturers

5. Erection facility and maintenance facility costs have been
amortized.
6. Tooling costs were assumed to be 4 percent of the average

factory cost of 400 units

7. RTD&E costs were considered to be a factor of 10 greater
than the cost of the first unit

8. Indirect support was considered at 5 percent of total direct
support

9. Spares were considered at 2 percent of total direct plus
indirect

10. Profit was considered at 10 percent of total cost including

spares

From the results of this preliminary analysis, it is apparent that rigid
airship acquisition costs can be expected to be below that of today's major do-
mestic aircraft on a price-per-pound basis. It is plausible to suggest that
when considering the impact of the prior discussion relative to new construc-

tion techniques that the price per pound may approach that of light airplanes.

Non-rigids (Economically)

A similar analysis could be performed for the historical data provided
earlier for non-rigids with similar trends resulting. It is not clear, however,
at this point that another such analysis would add significantly to our under-
standing. Accordingly, further economic analyses are better reserved for

Phase II.

Operational Aspects of Conventional MAV's

Mooring and Ground Handling

Based on the brief historical summary presented earlier, it was apparent
that much progress had been made in mooring and handling large airships. In

view of the projected in-frequent requirement to hangar (or dock) of an MAV,

prior techniques may well be substantially adequate. In any event, quantum
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advances are not essential in this respect to render an MAV a viable consider-

ation.

It is generally acknowledged that the manner in which prior airships were
moored requires considerable improvement although the Navy work of the
1950's was approaching what might be regarded as commercially practicable
operation for the size airship being used. Larger ships, however, would re-

sult in large crews and added equipment given the same approach.

In general, an automatic flight control system consisting perhaps of much
of the equipment in Figure 29 would be on-boarda large MAV. This equipment
would lead to a greatly improved opportunity to minimize ground crews and
ground handling equipment. With such a control system, under all but the most
severe of conditions,an MAV probably could be flown to and restrained to (with-
out external assistance froma ground crew) a turntable that would permit the
ship to weathervane subsequent to landing.

After suitable computer simulations are developed to model the behavior
of an MAYV with the control system under a variety of landing environments, the
ability to provide "pinpoint" controllability is not limited, as suggested above,
to only the most severe conditions. Given this possibility, such a control sys-
tem may require some augmentation in terms of ground crew and equipment
similar to that used by the Navy in the late 1950's. Although not used in
past airship operations, it seems reasonable to suggest television as an aid to

ground handling and perhaps more importantly to mooring.

Other approaches such as those described in Reference 29 have been sug-
gested that do not require the actual landing of the airship while cargo is off/on
loaded. Such a system would have its greatest merit for operation in areas
where fixed bases do not exist. However, in view of the results of this study
it is doubtful that the vehicle suggested in Reference 29 is best suited to the

delivery of cargo to areas other than where fixed bases do not exist.

Relative to fixed base operations, the suggestion made relative to landing

and mooring appears more realistic in that it is a much smaller departure

*Extremely large MAV's would not be docked for maintenance nor would they
be built in an enclosed hangar (Reference 29),
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from past practices and would appear to result in less weight penalty to the

airship itself.

Depending upon the response of the turntable/airship system to changes in
the incident winds, it may be desirable to have a network of wind sensors sur-
rounding (at a suitable distance from) the turntable. Information from the sen-
sor would provide inputs to a turntable drive mechanism, which in turn would

orient the MAYV into the wind. A similar scheme is suggested in Reference 29.

Weather

General - Very significant progress in forecasting general and local

meteorological conditions has been realized since the last rigid airships were
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flown, a factor that has contributed much to the continuing improvement in HTA
safety. The use of the avionics onboard today's modern aircraft will be essen-
tial in an MAV. This capability will provide the ability to avoid severe
weather, something that the German pilots were able to do very successfully

even without such equipment.

Onboard radar in the Goodyear advertising ships is used to avoid severe

weather when the airship is penetrating passing fronts.

Not only will the advent of weather satellites, onboard radar, improved
navigation, and improved communications result in safety benefits but the
economics of prior operations also will be improved. These capabilities will
permit an optimal (least unfavorable) headwind route to be flown. The adverse
effects of headwinds themselves will be minimized by higher design velocities
that, with today's extensive advances in propulsion and noticeable improve -
ments in materials, can be obtained with minimal weight penalty. Neverthe-
less, avoidance of excessive headwinds will remain an operational considera-

tion.

In past operations, it was often common to fly close to the ground (where
turbulence is less) during very severe weather. Controllability of past config-
urations in this environment probably was not adequate since, to obtain a nose-
up attitude, the tail of the ship necessarily was forced toward the ground.
Vectored thrust can remedy this problem, but a more suitable approach in
some cases may be to use bow elevators. These devices were successfully
incorporated and used on a non-rigid airship; thus, their feasibility is not

questionable.

Wind - The subject of minimizing the adverse effects of headwinds as well
as the use of radar to avoid severe weather has been discussed. The techni-
que that would be used in a conventional MAYV relative to landing in extremely
adverse wind conditions is the same as previously used; this consisted of delay-

ing the landing until the turbulent ground winds passed.

Snow - The techniques devised by the Navy relative to this problem and
discussed earlier should prove adaptable to future operational needs both dur-

ing flight and while moored.
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Tropical Storms - There are recorded instances where airships (such as

the Macon) have survived aspects of tropical storms. It would be essential
that an MAV (as in HTA vehicles) be removed from areas of expected tropical

disturbances.

Institutional Constraints

Institutional constraints are described in Volume I. Their impact relative

to the parametrics is addressed in Volume II.

Current Goodyear airship operations have no reason to operate other than
in a static equilibrium, or light condition, or in conditions not suited to visual
landings. As a result, exemption No. 1552 dated 27 March 1972 has been ob-
tained that permits Goodyear's airships to operate over populated areas within
the same minimum altitude and VFR weather minimums as helicopters. The
effect upon flying configurations in a heavy condition will have to be reviewed

during Phase II to assess the constraints that may be placed on such operations.

Buoyancy Management

This subject invoives a variety of considerations and is included in Figure
28. This subject, as related to the increase in buoyancy accompanying the
consumption of fuel of a density greater than that of air, is discussed in Volume
II. There are schemes such as those used in the Graf Zeppelin that eliminate
this problem. The multitude of possibilities available over the range of para-
meters involved in this phase relative to the approaches for buoyancy manage-
ment eliminates a serious discussion of refinements or revision to past techniques

until specific vehicle /mission combinations are considered in Phase II.

Many considerations are involved including type of propulsion system, type
of fuel, type of vehicle, use of heavy takeoff, whether vehicle is power exten-
sive, and altitude requirements. Accordingly, many specific decisions, often
interrelated, must be made unless one is to present a shopping list. While no
specific design innovations have been included in the "parametric design, " the
weight equations include allowances for buoyancy management techniques up-

dated to include today's materials.
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Recent LTA/HTA Vehicles and Concepts

Recent interest in LTA combined with HTA as a hybrid vehicle featuring
the best of these two has received considerable attention in recent years.

There are several reasons for this;:

l. A growing awareness of the ecological and energy problems
associated with current transportation systems

2. The realization that the operational characteristics and
capabilities of airships either are not available or are
available only to a limited extent in other transportation
systems

3. The conviction that the quantum advancements in aerospace
and aviation systems technology can place modern airships
on the same level of safety, economy, and performance
capability as alternate transportation system

4. The identification of many conventional and unique mis -
sions that modern airship vehicles could potentially per-

form cost effectively

As a result of these reasons, conventional and unconventional LTA as well
as LTA/HTA vehicles have been proposed and analyzed to varying degrees.
The more notable configurational concepts and designs to emerge in recent
years are discussed in the following paragraphs. It is beyond the scope of
this report to critique, evaluate, or rate the concepts/designs. Such a task
would undoubtedly and understandably be complicated by the varying extent of
design analyses performed and the extent to which results of analyses that
have been performed might be considered proprietary and therefore unavail-
able. It is certainly fair to say, however, that Goodyear maintains an interest
and knowledge of continuing LTA and LTA/HTA vehicle concepts and designs

and has applied this awareness and knowledge throught the present study.

The Airfloat heavy lift transporter by Airfloat Transport Ltd. and a cargo
transporter by Cargo Airships Ltd. are two of the most notable efforts under-
taken in recent years by British concerns. The Cargo Airship Ltd. project in-
volves a 1,132,800 cu m (40, 000, 000 cu ft) conventional rigid long-haul airship
while the Airfloat project considers a 849,600 cu m (30, 000, 000 cu ft) conven-

tional rigid designed for short-range carriage of large indivisible loads.
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Certain points of interest made in the Airfloat study, some of which have

been commented on previously, are summarized below:

1. Possible elimination of water recovery apparatus by

a. Heavy takeoff with decreasing fuel load accounted for
by modulating dynamic lift

b. Heated helium at takeoff, which is permitted to cool
as fuel is consumed

c. Intermediate ballast pickup

2. Loading and unloading cargo while the airship is hovering,
which necessitates a somewhat elaborate but plausible bal-
last exchange system, the rudiments of which Airfloat has
outlined. Airfloat also has realized the requirement for a
means of sensing and correcting misalignment from wind
directional changes, etc., during the hovering (loading and
unloading) process. Plausible concepts for accomplishing
this are also suggested.

3. Use of a turntable permitting the capability of mooring the
airship over its entire length while still permitting it to

weathervane.

With regard to hull construction, the "conventional rigid"as well as the
semi-monocoque metalclad and an aluminum faced honeycomb skin were con-
sidered by Airfloat. The "conventional rigid" using update materials was the

approach ultimately retained.

Powerplants considered included nuclear, gas turbine, reciprocating
diesel, and reciprocating petroleum. Airfloat concluded that nuclear power,
although attractive for long hauls, was expensive for producing a limited num-
ber of airships and was not readily available. Gas turbines were ultimately
favored due to their superior power-to-weight ratio, which more than offset

their somewhat higher specific fuel consumption.

Another British effort, the Skyship Project, is apparently continuing witha 13. 61
m (30 ft) "prototype" having recently flown in Cardington, England. The operational
Skyship configurationisa l, 047, 840 cu m (37, 000, 000 cu ft)volume flying saucer-
shapedvehicle some 317.52 m (700 ft)in diameter. Fuelandpayload capability

is on the order of 4 X 105 kg (400 tons); maximum speedis 51.44 m /s (100 knots).
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The Heli-Stat (Reference 30) heavy lift vehicle by the Piasecki Aircraft
Corporation is currently undergoing detailed study and definition by that firm

under contract to the Navy. Goodyear is assisting Piasecki with such items as
defining the LTA hull and helicopter support structure, preparing manufactur-
ing cost information, and providing guidance from the overall LTA aspects of

such a vehicle.

This 68, 032 kg (75 ton)payload Heli-Stat uses an essentially conventional he-
lium-filled rigidairship hull (minus tail surfaces)of approximately 82, 128 cu m
(2,900, 000 cu ft)to which four CH-54B helicopters are attached. The LTA hulland
helicopters are joinedby a lightweighttruss workthatties the fuselage structure of
the helicopter tothe main frame structure of the LTA hull, Thus, the 68, 032 kg
(75 ton)payload design employs demonstratedtechnology in the LTA hull and exis-
ting components in the helicopters to arrive at a vehicle that can lift payloads 10
times those of one of the helicopters alone and more than twice as much as an
LTA vehicle of comparable size. The static lift of the LTA structure supports
approximately the full weight of the entire vehicle; the rotor thrust is available

for useful load and maneuvering control forces.

The helicopter's control systems are interconnected so that they respond
to one set of controls in the master control helicopter. A qualified pilot is
stationed in each helicopter and serves as a manual instrument-monitoring

system with override capability if a component fails.

The helicopters are free to use their cyclic pitch in all directions (approxi-
mately 11 deg). In addition, they can be made to rotate about a transverse
axle in longitudinal pitch 60 deg forward and 30 deg aft but normally are locked
in a trim position. In the lateral direction, in addition to the rotor's lateral
cyclic control of approximately 11 deg, the helicopter can be made to tilt out-

board approximately 11 deg.

In the yaw direction, the helicopters are rigidly fixed to the aerostat struc-
tural keel. For yaw moments, the port and starboard helicopters can differ-
entially incline: their longitudinal cyclic. For lateral roll control, differen-
tial rotor collective pitch on one side, versus the opposite side is used. Pitch-
ing attitude is via differential collective pitch of the forward rotors versus the
aft.
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Propulsion is achieved from the forward cyclic pitch of all rotors. The
helicopters can be included as the dynamic lift of the aerostat develops with
forward speed. The aerostat angle of attack, and hence its lift, can be inde-
pendently adjusted by its longitudinal trim elevators. Retardation is achieved

by tilting the rotors aft.

Plausible approaches for emergency (i.e., complete power loss in one
helicopter) landing have been advanced in terms of complying with existing
FAA regulations. Plausible mooring provisions have been proposed and are

currently being reviewed for possible improvement.

The Aerocrane is a heavy lift vehicle proposed by the All American En-
gineering Company. Parametrics have been performed by All American for
payloads up to 226,200 kg (250 tons), with resulting sphere diameters of 76.3
m (250 ft) and forward velocities up to approximately 24.7 m/s (48 knots).

A small 6.8 m (15 ft) in diameter HTA model of the Aerocrane
concept has been made by All American. While the model does not use a lift-

ing gas, it illustrates the fundamental vehicular principles involved in the con-

cept.

Under contract to the Navy (see Reference 31), Goodyear performed a
comparative parametric and design study of conventional rigid and nonrigid
airships as well as dynamic lift aerostats (Dynastat) as applied to future naval
missions. The Dynastat vehicle is one class of vehicle being considered in
the current study.* The study considered gross weights ranging from 45, 360 to
680,400 kg (100, 000 to 1,500,000 1b), design velocities ranging from 46,1 m/s
to 107.9 m/s{90 to 210 knots), static lift-to-gross weight ratios ranging from 0.6
to 1.0for the Dynastat-type vehiclesand 0.8 to 1.0 for the conventional airships,

and operational altitudes ranging from 457.20 to 6096 m (1500 to 20, 000 ft).

The Helium Horse also is a configuration involving aerodynamic and aero-
static lift similar in some respects to the configuration of that description

analyzed in this study.

&
Reference 32 discusses a semibuoyant, lifting-body airship that is described
in Volume II. 137



Another area of study by Goodyear that is of some historical interest rel-
ative to modern airships is to control the boundary layer. Reference 33 sum-
marizes the Goodyear boundary layer control (BLC) study, which in this case

is applied to a non-rigid airship.

The findings of the BL.C airship showed sufficient increase in the airship
performance to warrant further study. The following specific conclusions were

offered:

1. The wind tunnel tests confirm the ability of the theoretical
methods to predict the boundary layer control of a body of

revolution at zero angle of attack.

2. The theory confirmed by the wind tunnel tests together
with allowance for inlet and duct losses predicts that the
bare hull power requirements for a full-scale BLC airship
hull of fineness ratio 3. 0 at zero angle of attack can be
expected to be 10 to 20 percent less than the power re-
quirements of a conventional airship hull of equal volume.

3. The difference in the components, other than the hull as-
sociated with the two configurations, offer an additional
5 to 10 percent reduction in power requirements for the
BLC non-rigid airship.

4. A BLC configuration with a fineness ratio 3. 0 can be ex-
pected to reduce the total propulsive power requirements
15 to 25 percent of a conventional non-rigid airship of
equal volume.

5. If both configurations have equal fuel quantities available,
BLC can be expected to increase the endurance 20 to 40
percent.

6. Indications exist that the fineness ratio of 3.0 may not be

optimum for a BLC airship.

Several recommendations resulting from the BLC study will be integrated

into an overall LTA technology plan to be developed as a part of Phase II.

A third area of investigation by Goodyear in recent years applicable to

the concept of modern airships is that of gimbaled stern propulsion. Under
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contract to ARPA (Reference 34), Goodyear modified one of its advertising air-
ships to incorporate a gimbaled stern propulsion system (see Figure 30) and
subsequently demonstrated the feasibility of this approach for low-speed con-
trol of the conventional airship configuration. Stern propulsion is often con-
sidered and logically so for the BL.C airship because the stern propeller to an
extent affects BLC. In the Phase II technology plan development, recommen-
dations are contemplated regarding the combination of stern propulsion and
BLC investigations as an area leading to possible worthwhile improvements in

future airship performance.

Aereon Corporation has built vehicles and conducted design studies of
vehicles combining aerostatic and aerodynamic lift as reported in Reference
35. Aereon III was a three-hulled rigid airship 25.91 m (85 ft) long. This con-
figuration was dismantled in 1967, and a vehicle combiningaerodynamics and
aerostatic lift (called Dynairship)was subsequently built and successfully flown.
This configuration could be considered for the aerodynamic /aerostatic vehicle
analyzed during this study.

Interest in the Soviet Union relative to LTA and LTA/HTA vehicles in re-
cent years reportedly has been significant. In 1965, the first all-Soviet Union
Conference on Dirigible Construction was held, at which time new techniques
and design criteria were explained. Substantial public controversy relative to
the desirability of extensive development of dirigibles by the USSR following
this conference also has been reported. While there is no reported authoriza-
tion of major national proportions, the Soviet Ministry of Aviation is said to

have authorized full exploration of several schemes.

One known project that reached a hardware stage is described below. An
airship design group in Kiev in 1969 built and tested a cigar-shaped airship
known as the D-1, which is 84 m (275.6 ft) long and 25 m (82 ft) in diameter. The
D-1 is a double-skinned semi-monocoque construction; the hull liner is fiber-
glass and the space between the inner and outer walls is filled with foam. The
airship is fully rigid, with four transverse frames and four stringers installed
inside the lining. One of the stringers has been reinforced to function as a
corridor between the cabins, which are located in the bow, tail, and center of
the ship below the hull. Helium gas bags of a thin synthetic material were

reportedly used.
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Figure 30 - Goodyear Mayflower Stern Propulsion Demonstration
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The D-1 reportedly operates at altitudes up to 7000 m (22, 920 ft) and can
travel 3000 km (1620 naut mi) nonstop. A turbofan tail-mounted engine is
reportedly used, with speeds ranging up to 200 km (108 naut mi) per hour.

Also, a mooring mast with a revolving platform is planned.

Airship designers in Leningrad reportedly are working on plans for a
double -hulled rigid airship under the supervision of an aero-nautical commis -
sion sponsored by the Soviet Geological Society. Uses for which airships have

recently and are apparently still being considered are:

1. Transporting heavy loads over long distances in Siberia

2. Transporting and installing heavy structures at building
sites

3. Radio communications

4. Medium-range airbuses and tourist cruisers

Various reports that non-rigid airships are being used in the Soviet Union
(apparently since the early 1960's) exist. Designers (W. Schmidt and Ulrich
Queck)in East Germany are reportedly involved with an advanced airship de -
sign called the Dolphin. The concept is reported to have originated from a
study of the mechanism of motion employed by the Dolphin as it propels itself
through the water. Claims, which perhaps can be substantiated although no de-
tailed analysis is known to be available, are that such an airship would be able
to fly at over 500 km (270 naut mi) per hour, take off and land vertically, rotate
about one point, and fly backward. It also is claimed that this type of airship
will displace conventional airship and sea-going vessels for mass passenger

travel in less than 100 years.

Recent interest in West Germany has centered around the efforts of
Theodor Wiullenkemper, who in 1972 built a 6000 cu m (212, 000 cu ft) non-rigid
airship at a reported cost of $625, 000. Reportedly, a second and possibly a third
airship of similar description has flown, with one airship about to fly with the
third sold to a Japanese firm. The initial Wiillenkemper airship was very

similar to the Goodyear advertising airships.

Projected details regarding Wiillenkemper airship configurations are given

in Table 26. Reportedly, the airships will see a wide variety of commercial
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TABLE 26 - TECHNICAL DETAILS OF PROPOSED (AND EXISTING)
WULLENKAMPER NON-RIGID AIRSHIPS®

WDL 1 WDL 2 WDL 3 WDL 4
experi- | experi- | experi- commercial
Detail mental mental mental design
Expected completion 1971 1972 1973 ?
Volume (m3 helium) 6, 000 13,000 | 20,000 | 64,000 +
Length (m) 55 70 80 120
Max diameter (m) 14.5 18 20 28
Gross weight (kg) 6,300 13,650 21, 000 21, 000
(65, 000?)
Useful load (payload kg) 1,500 5, 000 10, 000 30, 000
Useful load (payload tons) (1.5) (4.5) (9) (30)
Envelope weight (kg) 1,600 3,200 4,500 11,000
Power Plant (hp) 2 x 180 2 x 350 2 x 400 2 x 700
Max speed (kmh) 100 120 140 140
Range (operating radius)(km) 400 1,000 1,800 2,600+

1

*l.0cuft=2.832%10%cum, 1.0ft =3.048 x 10"

m, 1.01lbm = 4,536 X 10"kg,
1 HP = 7.457 x 10° watts, 1 mi = 1.609 km

uses including passenger transport, heavy load transport, and rescue operations
and will use a stable platform for scientific observation and military surveillance.
Reportedly, Willenkemper has recently applied for a permit to erect a permanent
hangar for building additional larger airships.

Two French configurations are of some interest and are briefly described
below. The Obelix Flying Crane consept uses existing equipment and specific-
ally is a heavy-lift, reasonably short-haul vehicle. It uses four balloons, each
with nearly 743,200 cu m (8, 000, 000 cu ft), to which eight helicopter rotors are
attached by means of a support structure. The responsible French design team
believes such a vehicle could be flying by 1980 if started in 1975. The team has
determined that three such vehicles could be used in France and 10 additional

units in the remainder of Europe.
The second French configuration of some interest is again a flying saucer-
shaped vehicle 234.70 m (770 ft) in diameter, with a volume of about 9.29 X 106

cum (100, 000, 000 cu ft}).
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